54 research outputs found

    Neuroprotective effects of blockers for T-type calcium channels

    Get PDF
    Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and Cav3.3) based on their respective main pore-forming alpha subunits: Ī±1G, Ī±1H, and Ī±1I. Among these three subunits, Ī±1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from Ī±1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the Ī±1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders

    No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Get PDF
    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family

    Age-related synaptic loss of the medial olivocochlear efferent innervation

    Get PDF
    Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis), a major cause of which is the loss of outer hair cells (OHCs) and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC) efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP), under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs

    Zambia Signal Functions study 2016 dataset

    Get PDF
    This dataset contains information related to health facilitiesā€™ infrastructure, staffing, equipment, supplies, and capacity to perform various clinical functions related to reproductive and maternal health service provision. The study was conducted in Central Province, Zambia and its primary aim was to assess facilitiesā€™ capacity to provide termination of pregnancy services. EMBARGOED UNTIL 31st DEC 201

    Simplified AMVP for High Efficiency Video Coding

    No full text
    In High Efficiency Video Coding (HEVC), advanced motion vector prediction (AMVP) is adopted to predict current motion vector by utilizing a competition-based scheme from a given candidate set, which include both the spatial and temporal motion vectors. In order to enhance the practicability of the AMVP, a simplified AMVP is proposed. Firstly, by analyzing the importance of the spatial and temporal candidates, we reduce the number of the candidates involved in the competition set and simplify the redundancy checking process, which will decrease the complexity of the decoder as well as improve the robustness of the decoder. Secondly, we simplify the zero motion adding process which will occur only when the number of existing candidates is less than the predefined number. Experimental results show that the proposed scheme provides no loss in random access and low delay conditions. These two simplifications have been proposed and adopted into the HEVC standard. ? 2012 IEEE.EI

    A Vehicle-Borne Mobile Mapping System Based Framework for Semantic Segmentation and Modeling on Overhead Catenary System Using Deep Learning

    No full text
    Overhead catenary system (OCS) automatic detection is of important significance for the safe operation and maintenance of electrified railways. The vehicle-borne mobile mapping system (VMMS) may significantly improve the data acquisition. This paper proposes a VMMS-based framework to realize the automatic detection and modelling of OCS. The proposed framework performed semantic segmentation, model reconstruction and geometric parameters detection based on LiDAR point cloud using VMMS. Firstly, an enhanced VMMS is designed for accurate data generation. Secondly, an automatic searching method based on a two-level stereo frame is designed to filter the irrelevant non-OCS point cloud. Then, a deep learning network based on multi-scale feature fusion and an attention mechanism (MFF_A) is trained for semantic segmentation on a catenary facility. Finally, the 3D modelling is performed based on the OCS segmentation result, and geometric parameters are then extracted. The experimental case study was conducted on a 100 km high-speed railway in Guangxi, China. The experimental results show that the proposed framework has a better accuracy of 96.37%, outperforming other state-of-art methods for segmentation. Compared with traditional manual laser measurement, the proposed framework can achieve a trustable accuracy within 10 mm for OCS geometric parameter detection

    A Vehicle-Borne Mobile Mapping System Based Framework for Semantic Segmentation and Modeling on Overhead Catenary System Using Deep Learning

    No full text
    Overhead catenary system (OCS) automatic detection is of important significance for the safe operation and maintenance of electrified railways. The vehicle-borne mobile mapping system (VMMS) may significantly improve the data acquisition. This paper proposes a VMMS-based framework to realize the automatic detection and modelling of OCS. The proposed framework performed semantic segmentation, model reconstruction and geometric parameters detection based on LiDAR point cloud using VMMS. Firstly, an enhanced VMMS is designed for accurate data generation. Secondly, an automatic searching method based on a two-level stereo frame is designed to filter the irrelevant non-OCS point cloud. Then, a deep learning network based on multi-scale feature fusion and an attention mechanism (MFF_A) is trained for semantic segmentation on a catenary facility. Finally, the 3D modelling is performed based on the OCS segmentation result, and geometric parameters are then extracted. The experimental case study was conducted on a 100 km high-speed railway in Guangxi, China. The experimental results show that the proposed framework has a better accuracy of 96.37%, outperforming other state-of-art methods for segmentation. Compared with traditional manual laser measurement, the proposed framework can achieve a trustable accuracy within 10 mm for OCS geometric parameter detection

    Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    No full text
    Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2) in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR) positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.</p
    • ā€¦
    corecore