52 research outputs found

    Inhibition of ammonia monooxygenase from ammonia oxidising archaea by linear and aromatic alkynes

    Get PDF
    Ammonia monooxygenase (AMO) is a key nitrogen-transforming enzyme belonging to the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate methane monooxygenase (pMMO). The AMO from ammonia-oxidizing archaea (AOA) is very divergent from both the AMO of ammonia-oxidizing bacteria (AOB) and the pMMO from methanotrophs, and little is known about the structure or substrate range of the archaeal AMO. This study compares inhibition by C 2 to C 8 linear 1-alkynes of AMO from two phylogenetically distinct strains of AOA, " Candidatus Nitrosocosmicus franklandus" C13 and " Candidatus Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-length alkynes (≀C 5) appeared to be conserved across AOA lineages. Similarities in C 2 to C 8 alkyne inhibition profiles between AMO from AOA and pMMO from M. capsulatus suggested that the archaeal AMO has a narrower substrate range than N. europaea AMO. Inhibition of AMO from " Ca Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne phenylacetylene was also investigated. Kinetic data revealed that the mechanisms by which phenylacetylene inhibits " Ca Nitrosocosmicus franklandus" and N. europaea are different, indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was found to be a specific and irreversible inhibitor of AMO from " Ca Nitrosocosmicus franklandus," and it does not compete with NH 3 for binding at the active site. IMPORTANCE Archaeal and bacterial ammonia oxidizers (AOA and AOB, respectively) initiate nitrification by oxidizing ammonia to hydroxylamine, a reaction catalyzed by ammonia monooxygenase (AMO). AMO enzyme is difficult to purify in its active form, and its structure and biochemistry remain largely unexplored. The bacterial AMO and the closely related particulate methane monooxygenase (pMMO) have a broad range of hydrocarbon cooxidation substrates. This study provides insights into the AMO of previously unstudied archaeal genera, by comparing the response of the archaeal AMO, a bacterial AMO, and pMMO to inhibition by linear 1-alkynes and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes suggests that the archaeal AMO has a narrower hydrocarbon substrate range than the bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the archaeal and bacterial AMOs at different thresholds and by different mechanisms of inhibition, highlighting structural differences between the two forms of monooxygenase

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    Get PDF
    Acknowledgements AB conceived the project and wrote the manuscript. CVG conceived the experimental design. SW designed the GCaMP reporter. AM, KL, LV-M, SC and TB constructed strains and optimised imaging. MF developed the image analysis software. CVG and CP carried out the microfluidics experiments and imaging analysis. NG assisted with preparation of the manuscript. PS, SN and DMR developed and undertook the theoretical data analysis and contributed to the interpretation of the results. Funding AB, CG and TB were funded by the Wellcome Trust [Grant number 206412/A/17/Z]. AB and DR were supported by a Wellcome Trust Institutional Strategic Support Award (WT204909/Z/16/Z). CP was funded by a University of Exeter studentship (113516). This work was also supported by a Royal Society URF (UF080611), an MRC NIRG (G0900211/90671) and the MRC-Centre for Medical Mycology at the University of Exeter (MR/N006364/2). DR was funded by the Medical Research Council (MR/P022405/1). SN was supported by the Medical Research Council via the GW4 BioMed2 DTP (MR/W006308/1). MCA was supported by a European Commission ITN ‘FungiBrain’ studentship (607963). LL and SC were funded by a Wellcome Trust Institutional Strategic Support Award to the University of Aberdeen. NG acknowledges support of Wellcome Trust Investigator, Collaborative, Equipment, Strategic and Biomedical Resource awards (101873, 200208, 215599, 224323). NG and AB thank the MRC (MR/M026663/2) for support. This study/research is funded by the National Institute for Health and Care Research (NIHR) Exeter Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordIntracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail.Wellcome TrustUniversity of ExeterRoyal SocietyMedical Research Council (MRC)European CommissionNational Institute for Health and Care Research (NIHR

    Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1).Peer reviewedPublisher PD

    Relationship between chronic pain and cognition in cognitively intact older persons and patients with Alzheimer's disease; the need to control for mood

    Get PDF
    Background: Brain areas that are involved in cognition and mood also play a role in pain processing. Objective: The goal of the present study was to examine the relationship between chronic pain and cognition [executive functions (EF) and memory], while controlling for mood, in cognitively intact older persons and in patients with Alzheimer's disease (AD). Methods: Two groups of subjects participated: 20 older persons without dementia and 19 patients in an early stage of probable AD who suffered from arthrosis/arthritis. Pain intensity and pain affect were assessed by the Colored Analogue Scale for Pain Intensity and for Pain Affect, the Faces Pain Scale (FPS) and the Number of Words Chosen-Affective (NWC-A). Level of depression and anxiety were evaluated by questionnaires. EF and memory were assessed by neuropsychological tests. Results: The results show that significant correlations between specific cognitive functions, pain intensity and pain affect were lacking in the cognitively intact older persons. Cognition, in particular memory, appeared to be related to depressive symptoms. In contrast, a significant positive correlation was observed between EF, pain intensity and pain affect measured by the FPS in the AD group. Conclusions: Although older persons with depression were excluded, in studies on pain and cognition one should control for the presence of depressive symptoms in older persons with and without dementia. Copyright © 2008 S. Karger AG

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    No full text
    ABSTRACT Calcium (Ca2+) is an important second messenger for activating stress response signaling and cell adaptation in eukaryotic cells yet intracellular Ca2+-dynamics in fungi are poorly understood due to lack of effective real-time Ca2+ reporters. We engineered the GCaMP6f construct for use in the fungal pathogen, Candida albicans, and used live-cell imaging to observe both dynamic Ca2+ spiking and slower changes in non-spiking Ca2+-GCaMP signals elicited by stress or gene deletion. Short-term exposure to membrane, osmotic or oxidative stress generated immediate stress-specific responses and repeated exposure revealed differential recovery signatures. Osmotic stress caused yeast cell shrinkage and no adaptation response, where Ca2+-GCaMP spiking was inhibited by 1 M NaCl but not by 0.666 M CaCl2. Treatment with sodium dodecylsulfate (SDS) caused a spike-burst, raised the non-spiking Ca2+-GCaMP signals, and caused significant cell death, but surviving cells adapted over subsequent exposures. Treatment with 5 mM H2O2 abolished spiking and caused transient non-GCaMP-related autofluorescence, but cells adapted such that spiking returned and autofluorescence diminished on repeated exposure. Adaptation to H2O2 was dependent on Cap1, extracellular Ca2+, and calcineurin but not on its downstream target, Crz1. Ca2+-dynamics were not affected by H2O2 in the hog1Δ or yvc1Δ mutants, suggesting a pre-adapted, resistant state, possibly due to changes in membrane permeability. Live-cell imaging of Ca2+-GCaMP responses in individual cells has, therefore, revealed the dynamics of Ca2+-influx, signaling and homeostasis, and their role in the temporal stress response signatures of C. albicans. IMPORTANCE Intracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail

    Archaea on human skin

    Get PDF
    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin

    Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake

    Get PDF
    12 páginas, 6 figuras, 1 tabla.Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter–spring (that is, the 0 oC slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer—autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC−1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC−1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC−1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments.This research was supported by grants CRENYC CGL2006-12058 and PIRENA CGL2009-13318 to EOC, and CONSOLIDER grant GRACCIE CSD2007-00067 from the Spanish Office of Science and Innovation (MICINN). JCA benefits from a Juan de la Cierva postdoctoral fellow (MICINN).Peer reviewe
    • 

    corecore