82 research outputs found

    Influence of the Reaction Injection Moulding Process on the Thermomechanical Behaviour of Fast Curing Polyurethane

    Get PDF
    In this contribution, the influence of the reaction injection moulding process on the thermomechanical material behaviour of aliphatic hexamethylene diisocyanate (HDI) based fast curing polyurethane is demonstrated. Uniaxial tensile tests, temperature-frequency dependent dynamic mechanical thermal analysis (DMTA) and Differential Scanning Calorimetry (DSC) are used to show the differences in properties for ten different sets of process parameters. The mould and resin components temperature, the mass flow during the filling process and the residence time during the reaction process of the polyurethane are varied in several stages. Further experiments to determine the molar mass of the molecular chain between two crosslinking points of the polyurethane are used to explain the process influences on the thermomechanical properties. Thus, a direct correlation between manufacturing and material properties is shown. In addition, the mutual effect of the different parameters and their overall influence on the material behaviour is presented

    Determination of strain limits for dimensioning polyurethane components

    Get PDF
    Within the scope of this contribution, a method for the determination of a strain limit for designing components made of elastomeric polyurethane systems is presented. The knowledge of a material-specific strain limit is essential for the structural-mechanical calculation of plastic components in the context of component design. Compared to a commonly used component design, based on a simplified dimensioning approach taking only linear viscoelastic deformations into account, the strain limit determined in this study allows an improved utilisation of lightweight construction potential in the dimensioning of technical components made of polyurethanes through the consideration of permissible nonlinear viscoelastic deformations. The test method comprises a sequence of quasi-static loading and unloading cycles, with a subsequent load-free recovery phase, allowing the relaxation of the viscoelastic forces. Standardised tensile and simple shear test specimens and a dynamic mechanical thermal analyser (DMTA) are used within the tests. The strain limit is determined by means of the so-called residual energy ratio, which is a characteristic quantity for the evaluation of hystereses of load–unload cycles. These hystereses are increasingly formed by deformations outside the range of linear viscoelastic deformations. The residual energy ratio relates the proportion of deformation energy recovered during unloading to the deformation work that is applied. In this contribution, the residual energy ratio is successfully used to detect a significant evolution of loss energy under increasing load and to correlate this transition to a characteristic strain. The latter is used as a dimensioning parameter for the design of components made of elastomeric polyurethane materials for quasi-static load cases. The determination of this strain limit is performed under consideration of the criterion of reversibility of deformation

    Determination of Strain Limits for Dimensioning Polyurethane Components

    Get PDF
    Within the scope of this contribution, a method for the determination of a strain limit for designing components made of elastomeric polyurethane systems is presented. The knowledge of a material-specific strain limit is essential for the structural-mechanical calculation of plastic components in the context of component design. Compared to a commonly used component design, based on a simplified dimensioning approach taking only linear viscoelastic deformations into account, the strain limit determined in this study allows an improved utilisation of lightweight construction potential in the dimensioning of technical components made of polyurethanes through the consideration of permissible nonlinear viscoelastic deformations. The test method comprises a sequence of quasi-static loading and unloading cycles, with a subsequent load-free recovery phase, allowing the relaxation of the viscoelastic forces. Standardised tensile and simple shear test specimens and a dynamic mechanical thermal analyser (DMTA) are used within the tests. The strain limit is determined by means of the so-called residual energy ratio, which is a characteristic quantity for the evaluation of hystereses of load–unload cycles. These hystereses are increasingly formed by deformations outside the range of linear viscoelastic deformations. The residual energy ratio relates the proportion of deformation energy recovered during unloading to the deformation work that is applied. In this contribution, the residual energy ratio is successfully used to detect a significant evolution of loss energy under increasing load and to correlate this transition to a characteristic strain. The latter is used as a dimensioning parameter for the design of components made of elastomeric polyurethane materials for quasi-static load cases. The determination of this strain limit is performed under consideration of the criterion of reversibility of deformation

    20 Jahre FoRuM Supervision - Ein Rückblick

    Get PDF
    Als Mit-Gründerirr und Mit-Herausgeberirr von FoRuM Supervision übernimmtAngelica Lehmenkühler-Leuschner im ersten Teil die Aufgabe, Aspekte der geschichtlichen Entwicklung der Anfänge von FoRuM Supervision und wichtige Institutionalisierungsprozesse sowie deren Hintergründe rückblickend zu beleuchten und somit auch die Leistung dieser Zeitschrift zu würdigen.Jürgen Kreft - geschäftsführender Redakteur seit 2001 und Mitherausgeber seit 2005 - nimmt den Faden im zweiten Teil auf und beschreibt die internen Diskussionen in Hinsicht auf die Herausforderung, Konzept und Intention des FoRuM weiter zu entwickeln und zu bewahren

    Vorwort

    Get PDF
    Vorwort zum Heft 46 - Supervision im Spannungsfeld von Deprofessionalisierung und Bedürftigkei

    Migraine aura: retracting particle-like waves in weakly susceptible cortex

    Get PDF
    Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale
    • …
    corecore