313 research outputs found

    CAVIAR: Climate variability of the Baltic Sea area and the response of the general circulation of the Baltic Sea to climate variability

    Get PDF
    The warming trend for the entire globe (1850-2005) is 0.04°C per decade. A specific warming period started around 1980 and continues at least until 2005, with a temperature increase of about 0.17°C per decade. This trend is equally well evident for many areas on the globe, especially on the northern hemisphere in observations and climate simulations. For the Baltic Sea catchment, which lies between maritime temperate and continental sub-Arctic climate zones, an even stronger warming of about 0.4°C per decade appeared since 1980. The annual mean air temperature increased by about 1°C until 2004. A similar warming trend could be observed for the sea surface temperature of the Baltic Sea. Even the annual mean water temperatures averaged spatially and vertically for the deep basins of the Baltic Sea show similar trends. We provide a detailed analysis of the climate variability and associated changes in the Baltic Sea catchment area as well as in the Baltic Sea itself for the period 1958-2009, in which the recent acceleration of the climate warming happened. Changes in the atmospheric conditions causes corresponding changes in the Baltic Sea, not only for temperature and salinity but also for currents and circulation. These changes in the physical conditions have strong impact on the marine ecosystem structure and processes

    Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production

    Get PDF
    The thermal stratification of the upper water layers in the Baltic Sea varies seasonally in response to the annual cycle of solar heating and wind-induced mixing. In winter, the stratification down to the halocline is almost completely eroded by convection and strong wind mixing. Monthly averaged temperature profiles obtained from the ICES hydrographic database were used to study the long-term variability (1950 to 2005) of winter water mass formation in different deep basins of the Baltic Sea east of the island of Bornholm. Besides strong interannual variability of deep winter water temperatures, the last two decades show a positive trend (increase of 1-1.5°C). Correlations of winter surface temperatures to temperatures of the winter water body located directly above or within the top of the halocline were strongly positive until the autumn months. Such a close coupling allows sea surface temperatures in winter to be used to forecast the seasonal development of the thermal signature in deeper layers with a high degree of confidence. The most significant impact of winter sea surface temperatures on the thermal signature in this depth range can be assigned to February/March. Stronger solar heating during spring and summer results in thermal stratification of the water column leading to a complete decoupling of surface and deep winter water temperatures. Based on laboratory experiments, temperature-dependent relationships were utilised to analyse interannual variations of biological processes with special emphasis on the upper trophic levels (e.g., stage-specific developmental rates of zooplankton and survival rates of fish eggs)

    Effects of remote and local atmospheric forcing on the circulation and upwelling in the Baltic Sea

    Get PDF
    Due to the ephemeral nature of the atmospheric conditions over the Baltic Sea, the flow field is highly variable, and thus, changes in the resulting circulation and upwelling are difficult to observe. However, three-dimensional models, forced by realistic atmospheric conditions and river runoff, have reached such a state of accuracy that the highly fluctuating current field and the associated evolution of the temperature and salinity field can be described. In this work, effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea are investigated. Changes in the characteristics of the large-scale atmospheric wind field over the central and eastern North Atlantic can be described by the North Atlantic Oscillation (NAO). The NAO is related to the strength and geographical position of weather systems as they cross the North Atlantic and thus has a direct impact on the climate in Europe. To relate the local wind field over the Baltic Sea to the large-scale atmospheric circulation, we defined a Baltic Sea Index (BSI), which is the difference of normalised sea level pressures between Oslo in Norway and Szczecin in Poland. The NAO is significantly related to the BSI. Furthermore, the BSI is highly correlated with the storage variation of the Baltic Sea and the volume exchange through the Danish Sounds. Based on three-dimensional model calculations, it is shown that different phases of the NAO during winter result in major changes of horizontal transports in the deep basins of the Baltic Sea and in upwelling along the coasts as well as in the interior of the basins. During NAO+ phases, strong Ekman currents are produced with increased up- and downwelling along the coasts and associated coastal jets, whereas during NAO− phases, Ekman drift and upwelling are strongly reduced, and the flow field can almost entirely be described by the barotropic stream function. The general nature of the mean circulation in the deep basins of the Baltic Sea, obtained from a 10-yr model run, can be described by the depth integrated vorticity balance derived from the transport equation for variable depth

    Identifying potentially high risk areas for environmental pollution in the Baltic Sea

    Get PDF
    The study aims at the identification of areas in the Baltic Sea from where potential pollution is transported to vulnerable regions. Generally, there is higher risk of ship accidents along the shipping routes and along the approaching routes to the harbors. The spreading of harmful substances is mainly controlled by prevailing atmospheric conditions and wind-induced local sea surface currents. Especially, spawning, nursery and tourist areas are considered high-vulnerable areas. With sophisticated high resolution numerical models, the complex current system of the Baltic Sea has been simulated, and with subsequent drift modeling areas of reduced risk or high-risk areas for environmental pollution could be identified. In a further step, optimum fairways of reduced risk could be obtained by following probability minima of coastal hits or maxima for the time it takes to reach the coast. The results could be useful for environmental management for the maritime industry to minimize the risk of environmental pollution in case of ship accidents

    Natural variability in hard bottom communities and possible drivers assessed by a time-series study in the SW Baltic Sea: know the noise to detect the change

    Get PDF
    In order to detect shifts in community structure and function associated with global change, the natural background fluctuation in these traits must be known. In a 6 yr study we characterized the composition of young benthic communities at 7 sites along the 300 km coast of the Kiel and Lübeck bights in the German Baltic Sea and we quantified their interannual variability of taxonomic and functional composition. Along the salinity gradient from NW to SE, the relative abundance of primary producers decreased while that of heterotrophs increased. Along the same gradient, annual productivity tended to increase. Taxonomic and functional richness were higher in Kiel Bight as compared to Lübeck Bight. With increasing species richness functional group richness showed saturation indicating an increasing functional redundancy in species rich communities. While taxonomic fluctuations between years were substantial, functionality of the communities seem preserved in most cases. Environmental conditions potentially driving these fluctuations are winter temperatures and current regimes. We tentatively define a confidence range of natural variability in taxonomic and functional composition a departure from which might help identifying an ongoing regime shift driven by global change. In addition, we propose to use RELATE, a statistical procedure in the PRIMER (Plymouth Routines in Multivariate Ecological Research) package to distinguish directional shifts in time ("signal") from natural temporal fluctuations ("noise"

    Water, heat and salt exchanges between the deep basins of the Baltic Sea

    Get PDF
    From numerical model simulations, fluxes of volume, heat and salt have been calculated for different hydrographical sections in areas which are important for the deep water exchange in the Baltic Sea. The calculated deep water flow in the Arkona basin is in accordance with independent estimations obtained from profile data. Model results reveal strong seasonal and inter-annual variability in the calculated fluxes. The variability is governed by the prevailing atmospheric conditions. It is found that the strength of the upper layer low saline flow in the Arkona Basin which on average is directed to the west, opposite to the mean wind direction, is compensated by a high saline flow in deeper layers. The upper layer flow is a combination of a flow forced by the fresh water surplus directed to the west, and a wind-driven part. In dependence on the prevailing wind conditions the resulting flow is either increased or decreased. Furthermore, increasing upper layer flow results in an increased lower layer flow in opposite direction. The annual mean flow is weakly correlated with the annual mean runoff to the Baltic Sea. In accordance with the mean circulation, the flow through the Bornholm Channel is on average directed to the east, and south of Bornholm to the west indicating an import of heat and salt to the Bornholm Basin through the Bornholm Channel and an export south of Bornholm. Flux characteristics change further downstream in the Stolpe Channel. The volume flow in the upper layer shows a strong seasonal signal. During autumn to spring the flow is mainly directed to the east, in summer, the flow direction is reversed. Flow in westerly directions is related to increased lower layer flow in easterly directions. On average, the net flow through the Stolpe channel is directed to the east which is in accordance with the mean circulation. Calculated fluxes show high intra- and inter-annual variability with no obvious trend during the simulation period. The variability of the deep water stratification in the deep basins of the Baltic Sea is directly controlled by the changing flux characteristics

    Low cost pressure sensors for impact detection in composite structures

    Get PDF
    AbstractA new technology of flexible pressure sensors is developed using conducting polymers as electroactive materials on plastic substrates. The sensor measures quantitative pressure and the use of an appropriate synthesis strategy in the electroactive material tuning an adequate electrical conductivity and film morphology allows working pressure ranges to be taylor-made designed. Using low cost materials, high surface sensors are easily fabricated. The present work describes the integration of this innovative, low cost and flexible technology on composite structures opening interesting potential opportunities for impact detection and measurements on these types of components

    Long-term trends at the Time Series Station Boknis Eck (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication?

    Get PDF
    The Boknis Eck (BE) time series station, initiated in 1957, is one of the longest-operated time series stations worldwide. We present the first statistical evaluation of a data set of nine physical, chemical and biological parameters in the period of 1957–2013. In the past three to five decades, all of the measured parameters underwent significant long-term changes. Most striking is an ongoing decline in bottom water oxygen concentration, despite a significant decrease of nutrient and chlorophyll a concentrations. Temperature-enhanced oxygen consumption in the bottom water and a prolongation of the stratification period are discussed as possible reasons for the ongoing oxygen decline despite declining eutrophication. Observations at the BE station were compared with model output of the Kiel Baltic Sea Ice Ocean Model (BSIOM). Reproduced trends were in good agreement with observed trends for temperature and oxygen, but generally the oxygen concentration at the bottom has been overestimated
    • …
    corecore