52 research outputs found

    Linearizing nonlinear optics

    Full text link
    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second harmonic frequency while maintaining the exact shape of the input power spectrum squared. This nonlinear control over output amplitudes and phases opens up new avenues for applications based on manipulation of coherent light fields. One could investigate c.f. the effect of tailored nonlinear perturbations on the evolution of discrete eigenmodes in Anderson localization2. Our approach might also open a new chapter for controlling electronic and vibrational couplings in 2D-spectroscopy3 by the geometrical optical arrangement

    Adult cardiac surgery during the COVID-19 Pandemic: A Tiered Patient Triage Guidance Statement

    Get PDF
    In the setting of the current novel coronavirus pandemic, this document has been generated to provide guiding statements for the adult cardiac surgeon to consider in a rapidly evolving national landscape. Acknowledging the risk for a potentially prolonged need for cardiac surgery procedure deferral, the authors have created this proposed template for physicians and interdisciplinary teams to consider in protecting their patients, institution and their highly specialized cardiac surgery team. In addition, recommendations on the transition from traditional in-person patient assessments and outpatient follow-up are provided. Lastly, we advocate that the cardiac surgeon must continue to serve as leaders, experts, and relevant members of our medical community, shifting our role as necessary in this time of need

    Ramping up Delivery of Cardiac Surgery During the COVID-19 Pandemic: A Guidance Statement from The Society of Thoracic Surgeons COVID-19 Task Force

    Get PDF
    The COVID-19 pandemic has had a profound global impact. Its rapid transmissibility has transformed healthcare delivery and forced countries to adopt strict measures to contain its spread. The vast majority of U.S. cardiac surgical programs have deferred all but truly emergent/urgent operative procedures in an effort to reduce the burden on the healthcare system and to mobilize resources to combat the pandemic surge. While the number of COVID-19 cases continues to increase worldwide, the incidence of new cases has begun to decline in many North American cities. This flattening of the curve has prompted interest in re-opening the economy, relaxing public health restrictions, and resuming non-urgent health care delivery

    Femtosecond Laser Mass Spectrometry and High Harmonic Spectroscopy of Xylene Isomers

    Get PDF
    Structural isomers, molecules having the same chemical formula but with atoms bonded in different order, are hard to identify using conventional spectroscopy and mass spectrometry. They exhibit virtually indistinguishable mass spectra when ionized by electrons. Laser mass spectrometry based on photoionization of the isomers has emerged as a promising alternative but requires shaped ultrafast laser pulses. Here we use transform limited femtosecond pulses to distinguish the isomers using two methods. First, we probe doubly charged parent ions with circularly polarized light. We show that the yield of doubly charged ortho-xylene decreases while para-xylene increases over a range of laser intensities when the laser polarization is changed from linear to circular. Second, we probe high harmonic generation from randomly oriented isomer molecules subjected to an intense laser field. We show that the yield of high-order harmonics varies with the positioning of the methyl group in xylene isomers (ortho-, para- and meta-) and is due to differences in the strength of tunnel ionization and the overlap between the angular peaks of ionization and photo-recombination

    The effect of total arterial grafting on medium-term outcomes following coronary artery bypass grafting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While it is believed that total arterial grafting (TAG) for coronary artery bypass grafting (CABG) confers improved long-term outcomes when compared to conventional grafting with left internal mammary artery and saphenous vein grafts (LIMA+SVG), to date, this has not become the standard of care. In this study, we assessed the impact of TAG on medium-term outcomes after CABG.</p> <p>Methods</p> <p>Peri-operative data was prospectively collected on consecutive first-time, isolated CABG patients between 1995 and 2005. Patients were divided into two groups based on grafting strategy: TAG (all arterial grafts no saphenous veins) or LIMA+SVG. Patients who had an emergent status or underwent fewer than two distal bypasses were excluded. Medium term univariate and risk-adjusted comparisons between TAG and LIMA+SVG cases were performed.</p> <p>Results</p> <p>A total of 4696 CABG patients were included with 1019 patients undergoing TAG (22%). Unadjusted in-hospital mortality was 1.5% for TAG patients compared to 2.0% for LIMA+SVG (p = 0.31). The mean follow-up was 4.8 ± 2.0 years for TAG patients compared to 6.1 ± 3.0 years for LIMA+SVG patients (p < 0.0001). At follow-up total mortality (8% vs 19%; p < 0.0001), and the incidence of readmission to hospital for cardiac reasons (29% vs 38%; p < 0.0001) were significantly lower in TAG compared to LIMA+SVG patients. However, after adjusting for clinical covariates, TAG did not emerge as a significant independent predictor of long-term mortality (HR 0.92; CI 0.71–1.18), readmission to hospital (HR 1.02; CI 0.89–1.18) or the composite outcome of mortality and readmission (HR 1.00; CI 0.88–1.15). Risk adjusted survival was better than 88% in both TAG and LIMA-SVG patients at 5 years follow-up.</p> <p>Conclusion</p> <p>Patients undergoing TAG appear to experience lower rates of medium-term all-cause mortality and readmission to hospital for any cardiac cause when compared to patients undergoing LIMA+SVG. However, after adjusting for clinical variables, this difference no longer persists suggesting that at median follow-up there are no mortality or morbidity benefit based on the choice of conduit.</p

    Roadmap of ultrafast x-ray atomic and molecular physics

    Get PDF
    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Angstrom, and HHG provides unprecedented time resolution (∼50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ∼280 eV (44 Angstroms) and the bond length in methane of ∼1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science

    Roadmap of ultrafast x-ray atomic and molecular physics

    Get PDF
    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Angstrom, and HHG provides unprecedented time resolution (∼50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ∼280 eV (44 Angstroms) and the bond length in methane of ∼1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science

    Fast interferometric second harmonic generation microscopy

    No full text
    We report the implementation of fast Interferometric Second Harmonic Generation (I-SHG) microscopy to study the polarity of non-centrosymmetric structures in biological tissues. Using a sample quartz plate, we calibrate the spatially varying phase shift introduced by the laser scanning system. Compensating this phase shift allows us to retrieve the correct phase distribution in periodically poled lithium niobate, used as a model sample. Finally, we used fast interferometric second harmonic generation microscopy to acquire phase images in tendon. Our results show that the method exposed here, using a laser scanning system, allows to recover the polarity of collagen fibrils, similarly to standard I-SHG (using a sample scanning system), but with an imaging time about 40 times shorter. OCIS codes: (180.4315) Nonlinear microscopy, (190.2620) Harmonic generation and mixing, (170.6935) Tissue characterization, (190.4180) Multiphoton processes, (190.4710) Optical nonlinearities in organic material
    • …
    corecore