11,225 research outputs found
The influence of turbulence on the structure and propagation of enclosed flames
Although it has long been established that burning rates can be
appreciably increased by turbulence, the actual extent of this increase and
the precise mechanism involved are still far from clear. The object of the
present research was to examine the effects of turbulence on burning
velocity and on the physical structure of the flame surface under flow
conditions similar to those experienced in turbojet afterburner systems
Repetition and difference: Lefebvre, Le Corbusier and modernity's (im)moral landscape: a commentary
This article engages with the relationship between social theory, architectural theory and material culture. The article is a reply to an article in a previous volume of the journal in question (Smith, M. (2001) ‘Repetition and difference: Lefebvre, Le Corbusier and modernity’s (im)moral landscape’, Ethics, Place and Environment, 4(1), 31-34) and, consequently, is also a direct engagement with another academic's scholarship. It represents a critique of their work as well as a recasting of their ideas, arguing that the matter in question went beyond interpretative issues to a direct critique of another author's scholarship on both Le Corbusier and Lefebvre. A reply to my article from the author of the original article was carried in a later issue of the journal (Smith, M. (2002) ‘Ethical Difference(s): a Response to Maycroft on Le Corbusier and Lefebvre’, Ethics, Place and Environment, 5(3), 260-269)
Variations of the solar granulation motions with height using the GOLF/SoHO experiment
Below 1 mHz, the power spectrum of helioseismic velocity measurements is
dominated by the spectrum of convective motions (granulation and
supergranulation) making it difficult to detect the low-order acoustic modes
and the gravity modes. We want to better understand the behavior of solar
granulation as a function of the observing height in the solar atmosphere and
with magnetic activity during solar cycle 23. We analyze the Power Spectral
Density (PSD) of eleven years of GOLF/SOHO velocity-time series using a
Harvey-type model to characterize the properties of the convective motions in
the solar oscillation power spectrum. We study then the evolution of the
granulation with the altitude in the solar atmosphere and with the solar
activity. First, we show that the traditional use of a lorentzian profile to
fit the envelope of the p modes is not well suitable for GOLF data. Indeed, to
properly model the solar spectrum, we need a second lorentzian profile. Second,
we show that the granulation clearly evolves with the height in the photosphere
but does not present any significant variation with the activity cycle.Comment: Paper accepted in A&A. 7 pages, 4 figures, 2 table
High-quality ion beams by irradiating a nano-structured target with a petawatt laser pulse
We present a novel laser based ion acceleration scheme, where a petawatt
circularly polarized laser pulse is shot on an ultra-thin (nano-scale)
double-layer target. Our scheme allows the production of high-quality light ion
beams with both energy and angular dispersion controllable by the target
properties. We show that extraction of all electrons from the target by
radiation pressure can lead to a very effective two step acceleration process
for light ions if the target is designed correctly. Relativistic protons should
be obtainable with pulse powers of a few petawatt. Careful analytical modeling
yields estimates for characteristic beam parameters and requirements on the
laser pulse quality, in excellent agreement with one and two-dimensional
Particle-in Cell simulations.Comment: 18 pages, 7 figures, accepted in New. J. Phy
Femtosecond x rays from laser-plasma accelerators
Relativistic interaction of short-pulse lasers with underdense plasmas has
recently led to the emergence of a novel generation of femtosecond x-ray
sources. Based on radiation from electrons accelerated in plasma, these sources
have the common properties to be compact and to deliver collimated, incoherent
and femtosecond radiation. In this article we review, within a unified
formalism, the betatron radiation of trapped and accelerated electrons in the
so-called bubble regime, the synchrotron radiation of laser-accelerated
electrons in usual meter-scale undulators, the nonlinear Thomson scattering
from relativistic electrons oscillating in an intense laser field, and the
Thomson backscattered radiation of a laser beam by laser-accelerated electrons.
The underlying physics is presented using ideal models, the relevant parameters
are defined, and analytical expressions providing the features of the sources
are given. Numerical simulations and a summary of recent experimental results
on the different mechanisms are also presented. Each section ends with the
foreseen development of each scheme. Finally, one of the most promising
applications of laser-plasma accelerators is discussed: the realization of a
compact free-electron laser in the x-ray range of the spectrum. In the
conclusion, the relevant parameters characterizing each sources are summarized.
Considering typical laser-plasma interaction parameters obtained with currently
available lasers, examples of the source features are given. The sources are
then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure
Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia
Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests
Crop load and harvest date have minimal impact on bud cold hardiness and cane carbohydrate levels of four grapevine cultivars
Four grapevine cultivars ('Pinot gris', 'Riesling', 'Cabernet franc', 'Cabernet Sauvignon') were subjected to six different field treatments in 2011 [two crop loads (full, half) X three harvest dates [normal (T0), 3 weeks after T0, 6 weeks after T0] in a randomized block design with a factorialized treatment arrangement. All treatments were sampled four times over the 2012 dormant season from January to March. Bud cold hardiness was evaluated for all four cultivars by measuring low temperature exotherms (LTEs) of dormant buds using differential thermal analysis. Cane carbohydrates (CHOs) were likewise analyzed in 'Pinot gris' and 'Riesling'. CHO analysis was done using an 80 % ethanol extraction and HPLC. Neither CHO levels nor cold hardiness were substantially affected by either crop level or harvest date. Consistent patterns of CHO changes and LTE values in each cultivar indicated that deacclimation was unaffected by treatment. Cold hardiness may be influenced more by cultivar specificity based on rates of maturation than by treatment.
Some experimental techniques in the study of flame stabilization
The purpose of this note is to describe one or two techniques
which are currently being used at Cranfield in various investigations
into the effects of flameholder geometry and flow parameters on the
process of flame stabilization. Much of the report is concerned with a
description of the nitrogen dilution technique as a means of simulating
low combustion pressures, and a comparison is made between this and the
now established water injection technique. It is shown that many
aspects of flame stability can be effectively studied by local injection
of nitrogen directly into the combustion zone, with appreciable economies
in the amounts of nitrogen required. A further application of this local
injection method is also described which has proved useful in an
investigation of the factors governing the amount of air entrained in the
recirculation zone
Clusters of Exceptional Points for a Laser Control of Selective Vibrational Transfer
When a molecule is exposed to a laser field, all field-free vibrational
states become resonances, with complex quasi energies calculated using Floquet
theory. There are many ways to produce the coalescences of pairs of such quasi
energies, with appropriate wavelength-intensity choices which define
Exceptional Points (EP) in the laser parameter plane. We dress for the
molecular ion H an exhaustive map of these exceptional points which
appear in clusters. Such clusters can be used to define several vibrational
transfer scenarios implying more than a single exceptional point, exchanging
single or multiple vibrational quanta. The ultimate goal is molecular
vibrational cooling by transferring an initial (thermal, for instance)
population on a final (ground, for instance) single vibrational state. When a
molecule is exposed to a laser field, all field-free vibrational states become
resonances, with complex quasi energies calculated using Floquet theory. There
are many ways to produce the coalescences of pairs of such quasi energies, with
appropriate wavelength-intensity choices which define Exceptional Points (EP)
in the laser parameter plane. We dress for the molecular ion H an
exhaustive map of these exceptional points which appear in clusters. Such
clusters can be used to define several vibrational transfer scenarios implying
more than a single exceptional point, exchanging single or multiple vibrational
quanta. The ultimate goal is molecular vibrational cooling by transferring an
initial (thermal, for instance) population on a final (ground, for instance)
single vibrational state.Comment: 16 pages, 7 figures, 1 tabl
Validity of adiabaticity in Cavity QED
This paper deals with the concept of adiabaticity for fully quantum
mechanically cavity QED models. The physically interesting cases of Gaussian
and standing wave shapes of the cavity mode are considered. An analytical
approximate measure for adiabaticity is given and compared with numerical wave
packet simulations. Good agreement is obtained where the approximations are
expected to be valid. Usually for cavity QED systems, the large atom-field
detuning case is considered as the adiabatic limit. We, however, show that
adiabaticity is also valid, for the Gaussian mode shape, in the opposite limit.
Effective semiclassical time dependent models, which do not take into account
the shape of the wave packet, are derived. Corrections to such an effective
theory, which are purely quantum mechanical, are discussed. It is shown that
many of the results presented can be applied to time dependent two-level
systems.Comment: 10 pages, 9 figure
- …