1,283 research outputs found

    How to understand it: Visual hallucinations

    Get PDF
    Visual hallucinations have intrigued neurologists and physicians for generations due to patients’ vivid and fascinating descriptions. They are most commonly associated with Parkinson’s disease and dementia with Lewy bodies, but also occur in people with visual loss, where they are known as Charles Bonnet syndrome. More rarely, they can develop in other neurological conditions, such as thalamic or midbrain lesions, when they are known as peduncular hallucinosis. This review considers the mechanisms underlying visual hallucinations across diagnoses, including visual loss, network dysfunction across the brain and changes in neurotransmitters. We propose a framework to explain why visual hallucinations occur most commonly in Parkinson’s disease and dementia with Lewy bodies, and discuss treatment approaches to visual hallucinations in these conditions

    Benchmarking vector arthropod culture: an example using the African malaria mosquito, Anopheles gambiae (Diptera: Culicidae)

    Get PDF
    Background: Numerous important characteristics of adult arthropods are related to their size; this is influenced by conditions experienced as immatures. Arthropods cultured in the laboratory for research, or mass-reared for novel control methods, must therefore be of a standard size range and known quality so that results are reproducible.Methods: A simple two-step technique to assess laboratory culture methods was demonstrated using the mosquito Anopheles gambiae s.s. as a model. First, the ranges of key development outcomes were determined using various diet levels. The observed outcomes described the physiologically constrained limits. Secondly, the same outcomes were measured when using a standard operating procedure (SOP) for comparison with the determined ranges.Results: The standard method resulted in similar development rates to those of high and medium diets, wing length between those resulting from the high and medium diets, and larval survival exceeding all benchmark diet level values. The SOP used to produce experimental material was shown to produces high-quality material, relative to the biologically constrained limits.Conclusions: The comparison between all possible phenotypic outcomes, as determined by biological constraints, with those outcomes obtained using a given rearing protocol is termed “benchmarking”. A method is here demonstrated which could be easily adapted to other arthropods, to objectively assess important characters obtained, and methods used, during routine culture that may affect outcomes of research

    Benchmarking vector arthropod culture: an example using the African malaria mosquito, Anopheles gambiae (Diptera: Culicidae)

    Get PDF
    BACKGROUND: Numerous important characteristics of adult arthropods are related to their size; this is influenced by conditions experienced as immatures. Arthropods cultured in the laboratory for research, or mass-reared for novel control methods, must therefore be of a standard size range and known quality so that results are reproducible. METHODS: A simple two-step technique to assess laboratory culture methods was demonstrated using the mosquito Anopheles gambiae s.s. as a model. First, the ranges of key development outcomes were determined using various diet levels. The observed outcomes described the physiologically constrained limits. Secondly, the same outcomes were measured when using a standard operating procedure (SOP) for comparison with the determined ranges. RESULTS: The standard method resulted in similar development rates to those of high and medium diets, wing length between those resulting from the high and medium diets, and larval survival exceeding all benchmark diet level values. The SOP used to produce experimental material was shown to produces high-quality material, relative to the biologically constrained limits. CONCLUSIONS: The comparison between all possible phenotypic outcomes, as determined by biological constraints, with those outcomes obtained using a given rearing protocol is termed “benchmarking”. A method is here demonstrated which could be easily adapted to other arthropods, to objectively assess important characters obtained, and methods used, during routine culture that may affect outcomes of research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-016-1288-4) contains supplementary material, which is available to authorized users

    Visual dysfunction predicts cognitive impairment and white matter degeneration in Parkinson's disease

    Get PDF
    Visual dysfunction predicts dementia in Parkinsons disease (PD), but whether this translates to structural change is not known. We aimed to identify longitudinal white matter changes in patients with Parkinsons disease and low visual function and also in those who developed mild cognitive impairment (MCI). We used fixel-based analysis to examine longitudinal white matter change in PD. Diffusion MRI and clinical assessments were performed in 77 patients at baseline (22 low visual function /55 intact vision; and 13 MCI, 13 MCI converters /51 normal cognition) and 25 controls and again after 18 months. We compared micro-structural changes in fibre density, macro-structural changes in fibre bundle cross-section (FC) and combined fibre density and cross-section across white matter, adjusting for age, gender and intracranial volume. Patients with Parkinsons and visual dysfunction showed worse cognitive performance at follow up and were more likely to develop MCI compared with those with normal vision (p=0.008). Parkinsons with poor visual function showed diffuse micro-structural and macro-structural changes at baseline, whereas those with MCI showed fewer baseline changes. At follow-up, Parkinsons with low visual function showed widespread macrostructural changes, involving the fronto-occipital fasciculi, external capsules, and middle cerebellar peduncles bilaterally. No longitudinal change was seen in baseline MCI or in MCI converters, even when the two groups were combined. Parkinsons patients with poor visual function show increased white matter damage over time, providing further evidence for visual function as a marker of imminent cognitive decline

    Visual dysfunction in Parkinson's disease

    Get PDF
    Patients with Parkinson's disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson's disease-associated genetic mutations including GBA and LRRK2 We discuss the association between visual deficits and clinical features of Parkinson's disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson's disease

    Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson's disease

    Get PDF
    Parkinson's dementia is characterised by changes in perception and thought, and preceded by visual dysfunction, making this a useful surrogate for dementia risk. Structural and functional connectivity changes are seen in humans with Parkinson's disease, but the organisational principles are not known. We used resting-state fMRI and diffusion-weighted imaging to examine changes in structural-functional connectivity coupling in patients with Parkinson's disease, and those at risk of dementia. We identified two organisational gradients to structural-functional connectivity decoupling: anterior-to-posterior and unimodal-to-transmodal, with stronger structural-functional connectivity coupling in anterior, unimodal areas and weakened towards posterior, transmodal regions. Next, we related spatial patterns of decoupling to expression of neurotransmitter receptors. We found that dopaminergic and serotonergic transmission relates to decoupling in Parkinson's overall, but instead, serotonergic, cholinergic and noradrenergic transmission relates to decoupling in patients with visual dysfunction. Our findings provide a framework to explain the specific disorders of consciousness in Parkinson's dementia, and the neurotransmitter systems that underlie these

    Introduction: locating gentrification in the Global East

    Get PDF
    This special issue, a collection of papers presented and debated at an Urban Studies Foundation-funded workshop on Global Gentrification in London in 2012, attempts to problematise contemporary understandings of gentrification, which is all too often confined to the experiences of the so-called Global North, and sometimes too narrowly understood as classic gentrification. Instead of simply confirming the rise of gentrification in places outside of the usual suspects of North America and Western Europe, a more open-minded approach is advocated so as not to over-generalise distinctive urban processes under the label of gentrification, thus understanding gentrification as constitutive of diverse urban processes at work. This requires a careful attention to the complexity of property rights and tenure relations, and calls for a dialogue between gentrification and non-gentrification researchers to understand how gentrification communicates with other theories to capture the full dynamics of urban transformation. Papers in this special issue have made great strides towards these goals, namely theorising, distorting, mutating and bringing into question the concept of gentrification itself, as seen from the perspective of the Global East, a label that we have deliberately given in order to problematise the existing common practices of grouping all regions other than Western European and North American ones into the Global South

    Characterisation of Peptide5 systemic administration for treating traumatic spinal cord injured rats

    Full text link
    © 2017, Springer-Verlag GmbH Germany. Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI

    Predicting disease progression in progressive supranuclear palsy in multicenter clinical trials

    Get PDF
    INTRODUCTION: Clinical and MRI measurements can track disease progression in PSP, but many have not been extensively evaluated in multicenter clinical trials. We identified optimal measures to capture clinical decline and predict disease progression in multicenter PSP trials. METHODS: Longitudinal clinical rating scales, neuropsychological test scores, and volumetric MRI data from an international, phase 2/3 clinical trial of davunetide for PSP (intent to treat population, n = 303) were used to identify measurements with largest effect size, strongest correlation with clinical change, and best ability to predict dropout or clinical decline over one year as measured by PSP Rating Scale (PSPRS). RESULTS: Baseline cognition as measured by Repeatable Battery for Assessing Neuropsychological Status (RBANS) was associated with attrition, but had only a small effect. PSPRS and Clinical Global Impression (CGI) had the largest effect size for measuring change. Annual change in CGI, RBANS, color trails, and MRI midbrain and ventricular volumes were most strongly correlated with annual PSPRS and had the largest effect sizes for detecting annual change. At baseline, shorter disease duration, more severe depression, and lower performance on RBANS and executive function tests were associated with faster worsening of the PSPRS in completers. With dropouts included, SEADL, RBANS, and executive function tests had significant effect on PSPRS trajectory of change. CONCLUSION: Baseline cognitive status and mood influence the rate of disease progression in PSP. Multiple clinical, neuropsychological, and volumetric MRI measurements are sensitive to change over one year in PSP and appropriate for use in multicenter clinical trials

    Reply: MRI findings of visual system alterations in Parkinson's disease

    Get PDF
    • …
    corecore