73 research outputs found

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled geo-referenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74 mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    Rooting for food security in Sub-Saharan Africa

    Get PDF
    There is a persistent narrative about the potential of Sub-Saharan Africa (SSA) to be a 'grain breadbasket' because of large gaps between current low yields and yield potential with good management, and vast land resources with adequate rainfall. However, rigorous evaluation of the extent to which soils can support high, stable yields has been limited by lack of data on rootable soil depth of sufficient quality and spatial resolution. Here we use location-specific climate data, a robust spatial upscaling approach, and crop simulation to assess sensitivity of rainfed maize yields to root-zone water holding capacity. We find that SSA could produce a modest maize surplus but only if rootable soil depths are comparable to that of other major breadbaskets, such as the US Corn Belt and South American Pampas, which is unlikely based on currently available information. Otherwise, producing surplus grain for export will depend on expansion of crop area with the challenge of directing this expansion to regions where soil depth and rainfall are supportive of high and consistent yields, and where negative impacts on biodiversity are minimal

    Knowledge, perceived stigma, and care-seeking experiences for sexually transmitted infections: a qualitative study from the perspective of public clinic attendees in Rio de Janeiro, Brazil

    Get PDF
    BACKGROUND: An estimated 12 million sexually transmitted infections (STIs) are documented in Brazil per year. Given the scope of this public health challenge and the importance of prompt treatment and follow-up counseling to reduce future STI/HIV-related risk behavior, we sought to qualitatively explore STI clinic experiences among individuals diagnosed with STIs via public clinics in Rio de Janeiro, Brazil. The study focused on eliciting the perspective of clinic users with regard to those factors influencing their STI care-seeking decisions and the health education and counseling which they received during their clinic visit. METHODS: Thirty semi-structured interviews were conducted with heterosexual men and women and men who have sex with men presenting with STIs at two public clinics. Content analysis was conducted by coding transcripts of audio-taped interviews for key domains of interest and comparing and synthesizing code output across participants and sub-groups. Thematic narratives were then developed per each of the study sub-groups. RESULTS: Salient themes that emerged from participant narratives included the importance of low STI-related knowledge and high perceived stigma, both STI-related and other types of social stigma, on STI care-seeking delays. However, there are indications in the data that the level of STI-related knowledge and the amount and types of stigma experienced vary across the study sub-groups suggesting the need for further research on the significance and program relevance of these potential differences. Interview findings also suggest that such barriers to care seeking are not adequately addressed through ongoing health education and counseling efforts at public STI clinics and in turn critical opportunities for STI/HIV prevention are currently being missed. CONCLUSION: Information, communication and education regarding early recognition and prompt care-seeking for STIs should be developed, with consideration given to the possibility of tailoring messages tailored to specific sub-groups. To promote prompt treatment-seeking, interventions must also address both STI-specific and other forms of social stigma which may limit access to care. Efforts to further assess and respond to barriers related to the delivery of quality health education and counseling within the context of public STI clinics are also needed

    Home-based chlamydia testing of young people attending a music festival - who will pee and post?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chlamydia is most common among young people, but only a small proportion of Australian young people are tested annually. Home-based chlamydia testing has been piloted in several countries to increase testing rates, but uptake has been low. We aimed to identify predictors of uptake of home-based chlamydia testing to inform future testing programs.</p> <p>Methods</p> <p>We offered home-based chlamydia testing kits to participants in a sexual behaviour cross-sectional survey conducted at a music festival in Melbourne, Australia. Those who consented received a testing kit and were asked to return their urine or vaginal swab sample via post.</p> <p>Results</p> <p>Nine hundred and two sexually active music festival attendees aged 16-29 completed the survey; 313 (35%) opted to receive chlamydia testing kits, and 67 of 313 (21%) returned a specimen for testing. One participant was infected with chlamydia (1% prevalence). Independent predictors of consenting to receive a testing kit included older age, knowing that chlamydia can make women infertile, reporting more than three lifetime sexual partners and inconsistent condom use. Independent predictors of returning a sample to the laboratory included knowing that chlamydia can be asymptomatic, not having had an STI test in the past six months and not living with parents.</p> <p>Conclusions</p> <p>A low proportion of participants returned their chlamydia test, suggesting that this model is not ideal for reaching young people. Home-based chlamydia testing is most attractive to those who report engaging in sexual risk behaviours and are aware of the often asymptomatic nature and potential sequelae of chlamydia infection.</p

    Appeals to evidence for the resolution of wicked problems: the origins and mechanisms of evidentiary bias

    Get PDF
    Wicked policy problems are often said to be characterized by their ‘intractability’, whereby appeals to evidence are unable to provide policy resolution. Advocates for ‘Evidence Based Policy’ (EBP) often lament these situations as representing the misuse of evidence for strategic ends, while critical policy studies authors counter that policy decisions are fundamentally about competing values, with the (blind) embrace of technical evidence depoliticizing political decisions. This paper aims to help resolve these conflicts and, in doing so, consider how to address this particular feature of problem wickedness. Specifically the paper delineates two forms of evidentiary bias that drive intractability, each of which is reflected by contrasting positions in the EBP debates: ‘technical bias’ - referring to invalid uses of evidence; and ‘issue bias’ - referring to how pieces of evidence direct policy agendas to particular concerns. Drawing on the fields of policy studies and cognitive psychology, the paper explores the ways in which competing interests and values manifest in these forms of bias, and shape evidence utilization through different mechanisms. The paper presents a conceptual framework reflecting on how the nature of policy problems in terms of their complexity, contestation, and polarization can help identify the potential origins and mechanisms of evidentiary bias leading to intractability in some wicked policy debates. The discussion reflects on whether being better informed about such mechanisms permit future work that may lead to strategies to mitigate or overcome such intractability in the future

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available
    • …
    corecore