240 research outputs found

    Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores

    Full text link
    We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in the vicinity of the vortex unbinding transition. The model is mapped onto an effective interacting vortex gas by a systematic perturbative elimination of all fluctuating degrees of freedom (amplitude {\em and} phase of the order parameter field) except the vortex positions. In the Coulomb gas descriptions derived previously in the literature, thermal amplitude fluctuations were neglected altogether. We argue that, if one includes the latter, the vortices still form a two- dimensional Coulomb gas, but the vortex fugacity can be substantially raised. Under the assumption that Minnhagen's generic phase diagram of the two- dimensional Coulomb gas is correct, our results then point to a first order transition rather than a Kosterlitz-Thouless transition, provided the Ginzburg-Landau correlation length is large enough in units of a microscopic cutoff length for fluctuations. The experimental relevance of these results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9

    Short report: Dynamics of Plasmodium falciparum malaria after sub-optimal therapy in Uganda.

    Get PDF
    We followed parasite genotypes of 75 patients for 42 days after treatment of uncomplicated malaria with chloroquine + sulfadoxine-pyrimethamine in Kampala, Uganda. Infections were complex (mean, 2.88 strains) and followed three patterns: 27% of patients eliminated all strains and remained parasite-free, 48% had a long aparasitemic interval followed by reappearance of original strains after 3-33 days (mean, 9.2 days), and 25% failed to clear original strains and required therapy after 3-35 days (mean, 17 days). These results highlight the complexity of malaria in Africa and have implications for efficacy trials, because missing late reappearances of strains could lead to misclassification of outcomes

    Dynamic Scaling of Magnetic Flux Noise Near the KTB Transition in Overdamped Josephson Junction Arrays

    Full text link
    We have used a dc Superconducting QUantum Interference Device to measure the magnetic flux noise generated by the equilibrium vortex density fluctuations associated with the Kosterlitz-Thouless-Berezinskii (KTB) transition in an overdamped Josephson junction array. At temperatures slightly above the KTB transition temperature, the noise is white for f<fξf<f_\xi and scales as 1/f1/f for f>fξf>f_\xi. Here fξξzf_\xi\propto\xi^{-z}, where ξ\xi is the correlation length and zz is the dynamic exponent. Moreover, when all frequencies are scaled by fξf_\xi, data for different temperatures and frequencies collapse on to a single curve. In addition, we have extracted the dynamic exponent zz and found z=1.98±0.03z=1.98\pm0.03.Comment: 5 pages, LaTeX (REVTeX) format, requires epsfig and amstex style files. 3 figures included. Tentatively scheduled for publication in Physical Review Letters, 18 March, 199

    DOSE REQUIREMENTS AND PLASMA CONCENTRATIONS OF PIPECURONIUM DURING BILATERAL RENAL EXCLUSION AND ORTHOTOPIC LIVER TRANSPLANTATION IN PIGS

    Get PDF
    We have studied five pigs undergoing bilateral clamping of the renal pedicles, seven pigs undergoing orthotopic liver transplantation and three control animals without surgery in order to examine the roles of the kidney and liver in the plasma clearance of pipecuronium. An i.v. infusion of pipecuronium was controlled to maintain a constant 90-95 % twitch depression throughout the investigation. The right sciatic nerve was stimulated continuously with supra-maximal stimuli at 0.1 Hz and the force of the corresponding evoked isometric muscle contraction was recorded continuously. Control pigs needed an infusion rate of pipecuronium 8-10.7 μg kg−1 min−1. In the renal group, it was necessary to reduce the infusion rate of pipecuronium by about 25% after clamping both renal vascular pedicles (P < 0.05 compared with controls); in pigs undergoing liver transplantation, it was necessary to reduce the rate by approximately 80% after clamping hepatic vessels (P < 0.05 compared with controls and from the period after clamping of renal vessels). After hepatic recirculation, the infusion rate of pipecuronium was increased progressively to a rate which corresponded to 50% of baseline values (P < 0.05 compared with the anhepatic phase and from controls). Plasma concentrations of pipecuronium were comparable in the three animal groups and did not change significantly during the study. These data suggest that the liver plays a more important role than the kidney in the plasma clearance of pipecuronium in pig

    Fluctuation-dissipation theorem and flux noise in overdamped Josephson junction arrays

    Full text link
    The form of the fluctuation-dissipation theorem for a resistively shunted Josephson juction array is derived with the help of the method which explicitely takes into acoount screening effects. This result is used to express the flux noise power spectrum in terms of frequency dependent sheet impedance of the array. The relation between noise amplitude and parameters of the detection coil is analysed for the simplest case of a single-loop coil.Comment: ReVTeX, 8 page

    The fully frustrated XY model with next nearest neighbor interaction

    Get PDF
    We introduce a fully frustrated XY model with nearest neighbor (nn) and next nearest neighbor (nnn) couplings which can be realized in Josephson junction arrays. We study the phase diagram for 0x10\leq x \leq 1 (xx is the ratio between nnn and nn couplings). When x<1/2x < 1/\sqrt{2} an Ising and a Berezinskii-Kosterlitz-Thouless transitions are present. Both critical temperatures decrease with increasing xx. For x>1/2x > 1/\sqrt{2} the array undergoes a sequence of two transitions. On raising the temperature first the two sublattices decouple from each other and then, at higher temperatures, each sublattice becomes disorderd.Comment: 11 pages, 5 figure

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    1/\omega-flux-noise and dynamical critical properties of two-dimensional XY-models

    Full text link
    We have numerically studied the dynamic correlation functions in thermodynamic equilibrium of two-dimensional O(2)-symmetry models with either bond (RSJ) or site (TDGL) dissipation as a function of temperature T. We find that above the critical temperature the frequency dependent flux noise SΦ(ω)1+(ω/Ω)2α(T)/2S_{\Phi}(\omega)\sim \vert 1+ {(\omega/\Omega)}^2\vert^{-\alpha (T)/2}, with 0.85α(TDGL)(T)0.950.85\leq \alpha (TDGL)(T)\leq 0.95 and 1.17α(RSJ)(T)1.271.17 \leq \alpha (RSJ)(T) \leq 1.27, while the dynamic critical exponents z(TDGL)2.0z(TDGL)\sim 2.0 and z(RSJ)0.9z(RSJ)\sim 0.9. Contrary to expectation the TDGL results are in closer agreement with the experiments in Josephson-junction arrays by Shaw et al., than those from the RSJ model. We find that these results are related to anomalous vortex diffusion through vortex clusters.Comment: 4 pages Rev-Tex, two figures in postscript. To appear In Physical Review Letter
    corecore