156 research outputs found

    Hyperglycemia and Death in Cystic Fibrosis–Related Diabetes

    Get PDF
    OBJECTIVE Diabetes is common in cystic fibrosis and increases the risk of death, yet the role of hyperglycemia remains unproven. An association between glycemia and mortality would provide compelling evidence to support glucose lowering in cystic fibrosis–related diabetes (CFRD). RESEARCH DESIGN AND METHODS Using the U.K. Cystic Fibrosis Registry, we analyzed longitudinal data from 2006 to 2009 in 520 individuals with diabetes. We tested the association between HbA1c and mortality. RESULTS During a median follow-up of 2 years, 36 patients died. The median value of HbA1c was higher in those who died (7.3%) than in those who did not (6.7%). An HbA1c value of ≥6.5% was associated with a threefold increased risk of death (hazard ratio 3.2 [95% CI 1.4–7.3]; P = 0.005) independent of potential confounders. CONCLUSIONS Hyperglycemia trebles the risk of death in patients with CFRD. These findings provide epidemiologic support for continued efforts to improve glycemic control. Diabetes frequently complicates cystic fibrosis. Cystic fibrosis–related diabetes (CFRD) has an incidence in teenagers of up to 6% per year and a prevalence in adults of >30% (1,2). Diabetes further elevates the already high mortality rates in cystic fibrosis (3–5). In individuals without cystic fibrosis, diabetes increases the risk of death, and in individuals with diabetes, hyperglycemia increases the risk of death (6,7). However, no study of CFRD using national data has investigated whether hyperglycemia, per se, increases the risk of death; likewise, no trial has tested whether controlling blood glucose prolongs survival. Proving an association between glycemia and mortality in cystic fibrosis would provide compelling observational evidence to inform clinical practice. Using the U.K. Cystic Fibrosis Registry, we performed longitudinal analyses to test the association between glycemia, as measured by HbA1c, and mortality in individuals with CFRD

    Pharmacokinetics of insulin aspart in pump-treated subjects with type 1 diabetes: reproducibility and effect of age, weight, and duration of diabetes.

    Get PDF
    Insulin aspart, lispro, or glulisine are recommended in pump-treated type 1 diabetes (T1D). Aspart pharmacokinetics has been studied (1), but little is known about its reproducibility and associations with anthropometric and clinical factors. We analyzed retrospectively data collected in 70 pump-treated subjects with T1D, comprising 39 females, 46 young, with mean (SD) BMI 22.7 (4.2) kg/m2, A1C 8.1% (1.3) (65.3 [14.4] mmol/mol), and total daily insulin 0.8 (0.3) units/kg/day, who were undergoing investigations, with ethical approval, of closed-loop insulin delivery. Participants/guardians signed consent/assent as appropriate. Participants were admitted twice to the research facility, 1–6 weeks apart, for 15–37 h, and consumed 1–4 meals accompanied by prandial insulin aspart. Basal aspart was delivered using closed-loop insulin delivery or conventional pump therapy. Venous blood samples were collected every 30–60 min to measure plasma insulin (Invitron, Monmouth, U.K.). From 5,804 plasma insulin measurements, we estimated, using a two-compartment model, the time-to-peak plasma insulin concentration (tmax [min]), the metabolic clearance rate of insulin (MCR in mL/kg/min), and the background residual plasma insulin concentration (mU/L). Results are presented in Table 1. Sex differences in aspart kinetics were not observed. Aspart pharmacokinetics was weakly influenced by common clinical and anthropometric factors, because less than 20% of intersubject variability was explained by sex, BMI, total daily dose, A1C, and diabetes duration

    Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial.

    Get PDF
    INTRODUCTION: Closed-loop (CL) systems modulate insulin delivery according to glucose levels without nurse input. In a prospective randomized controlled trial, we evaluated the feasibility of an automated closed-loop approach based on subcutaneous glucose measurements in comparison with a local sliding-scale insulin-therapy protocol. METHODS: Twenty-four critically ill adults (predominantly trauma and neuroscience patients) with hyperglycemia (glucose, ≥10 mM) or already receiving insulin therapy, were randomized to receive either fully automated closed-loop therapy (model predictive control algorithm directing insulin and 20% dextrose infusion based on FreeStyle Navigator continuous subcutaneous glucose values, n = 12) or a local protocol (n = 12) with intravenous sliding-scale insulin, over a 48-hour period. The primary end point was percentage of time when arterial blood glucose was between 6.0 and 8.0 mM. RESULTS: The time when glucose was in the target range was significantly increased during closed-loop therapy (54.3% (44.1 to 72.8) versus 18.5% (0.1 to 39.9), P = 0.001; median (interquartile range)), and so was time in wider targets, 5.6 to 10.0 mM and 4.0 to 10.0 mM (P ≤ 0.002), reflecting a reduced glucose exposure >8 and >10 mM (P ≤ 0.002). Mean glucose was significantly lower during CL (7.8 (7.4 to 8.2) versus 9.1 (8.3 to 13.0] mM; P = 0.001) without hypoglycemia (<4 mM) during either therapy. CONCLUSIONS: Fully automated closed-loop control based on subcutaneous glucose measurements is feasible and may provide efficacious and hypoglycemia-free glucose control in critically ill adults. TRIAL REGISTRATION: ClinicalTrials.gov Identifier, NCT01440842

    Safety, efficacy and glucose turnover of reduced prandial boluses during closed-loop therapy in adolescents with type 1 diabetes: a randomized clinical trial.

    Get PDF
    AIMS: To evaluate safety, efficacy and glucose turnover during closed-loop with meal announcement using reduced prandial insulin boluses in adolescents with type 1 diabetes (T1D). METHODS: We conducted a randomized crossover study comparing closed-loop therapy with standard prandial insulin boluses versus closed-loop therapy with prandial boluses reduced by 25%. Eight adolescents with T1D [3 males; mean (standard deviation) age 15.9 (1.5) years, glycated haemoglobin 74 (17) mmol/mol; median (interquartile range) total daily dose 0.9 (0.7, 1.1) IU/kg/day] were studied on two 36-h-long visits. In random order, subjects received closed-loop therapy with either standard or reduced insulin boluses administered with main meals (50-80 g carbohydrates) but not with snacks (15-30 g carbohydrates). Stable-label tracer dilution methodology measured total glucose appearance (Ra_total) and glucose disposal (Rd). RESULTS: The median (interquartile range) time spent in target (3.9-10 mmol/l) was similar between the two interventions [74 (66, 84)% vs 80 (65, 96)%; p = 0.87] as was time spent above 10 mmol/l [21.8 (16.3, 33.5)% vs 18.0 (4.1, 34.2)%; p = 0.87] and below 3.9 mmol/l [0 (0, 1.5)% vs 0 (0, 1.8)%; p = 0.88]. Mean plasma glucose was identical during the two interventions [8.4 (0.9) mmol/l; p = 0.98]. Hypoglycaemia occurred once 1.5 h post-meal during closed-loop therapy with standard bolus. Overall insulin delivery was lower with reduced prandial boluses [61.9 (55.2, 75.0) vs 72.5 (63.6, 80.3) IU; p = 0.01] and resulted in lower mean plasma insulin concentration [186 (171, 260) vs 252 (198, 336) pmol/l; p = 0.002]. Lower plasma insulin was also documented overnight [160 (136, 192) vs 191 (133, 252) pmol/l; p = 0.01, pooled nights]. Ra_total was similar [26.3 (21.9, 28.0) vs 25.4 (21.0, 29.2) µmol/kg/min; p = 0.19] during the two interventions as was Rd [25.8 (21.0, 26.9) vs 25.2 (21.2, 28.8) µmol/kg/min; p = 0.46]. CONCLUSIONS: A 25% reduction in prandial boluses during closed-loop therapy maintains similar glucose control in adolescents with T1D whilst lowering overall plasma insulin levels. It remains unclear whether closed-loop therapy with a 25% reduction in prandial boluses would prevent postprandial hypoglycaemia.US National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621). Support for the Artificial Pancreas research programme by the JDRF, Diabetes UK, NIHR Cambridge Biomedical Research Centre, and Wellcome Trust Strategic Award (100574/Z/12/Z) is acknowledged.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/dom.1254

    Satisfaction with the Use of Different Technologies for Insulin Delivery and Glucose Monitoring Among Adults with Long-Standing Type 1 Diabetes and Problematic Hypoglycemia: 2-Year Follow-Up in the HypoCOMPaSS Randomized Clinical Trial

    Get PDF
    Background In the HypoCOMPaSS trial, adults with long-standing type 1 diabetes and problematic hypoglycaemia were randomised to compare insulin pump (CSII) vs multiple daily injections (MDI) and real-time continuous glucose monitoring (RT-CGM) vs conventional self-monitoring (SMBG). Our aim was to investigate participants\u27 satisfaction with these technologies at 6-month RCT endpoint and at 2-year follow-up. Methods Participants completed the Insulin Treatment Satisfaction Questionnaire (ITSQ) subscales \u27device delivery\u27 and \u27hypoglycaemia control\u27; and Glucose Monitoring Experience Questionnaire (GME-Q), assessing \u27convenience\u27, \u27effectiveness\u27, \u27intrusiveness\u27 and \u27total satisfaction\u27. We assessed change over time and between group differences by insulin and monitoring modalities. Results Participants (N=96) were: 64% women, aged 49\ub112 years, diabetes duration 29\ub112 years. At 6 months, participants reported improvements compared to baseline (all p&lt;0.001) in satisfaction with insulin \u27delivery device\u27 (r=0.39) and \u27hypoglycaemia control\u27 (r=0.52), and trends towards significance in perceived \u27effectiveness\u27 (r=0.42) and \u27intrusiveness\u27 (r=0.27) of monitoring device (but not \u27convenience\u27, p=0.139). All improvements were sustained at 2 years. At 6 months, the only difference between arms was that greater satisfaction with insulin \u27delivery device\u27 was reported in the CSII group compared to MDI (p&lt;0.001, r=0.40). No between-group differences were observed at 2 years. Conclusions Overall, significant improvements in participant satisfaction with diabetes technologies were observed over the 6-month RCT, in all domains except \u27convenience\u27, maintained at 2 years. While HypoCOMPaSS demonstrated non-inferiority of SMBG versus CGM, and MDI versus CSII in terms of biomedical outcomes, detailed assessments confirm participants\u27 satisfaction with delivery device was greater in those allocated to CSII than MDI

    Evaluating Glucose Control With a Novel Composite Continuous Glucose Monitoring Index.

    Get PDF
    OBJECTIVE: The objective was to describe a novel composite continuous glucose monitoring index (COGI) and to evaluate its utility, in adults with type 1 diabetes, during hybrid closed-loop (HCL) therapy and multiple daily injections (MDI) therapy combined with real-time continuous glucose monitoring (CGM). METHODS: COGI consists of three key components of glucose control as assessed by CGM: Time in range (TIR), time below range (TBR), and glucose variability (GV) (weighted by 50%, 35% and 15%). COGI ranges from 0 to 100, where 1% increase of time 7.5-10%, had significantly higher COGI during 12 weeks of HCL compared to sensor-augmented pump therapy, mean (SD), 60.3 (8.6) versus 69.5 (6.9), P 7.5% to 9.9%, use of real-time CGM led to improved COGI, 49.8 (14.2) versus 58.2 (9.1), P < .0001. In MDI users with impaired awareness of hypoglycemia, use of real-time CGM led to improved COGI, 53.4 (12.2) versus 66.7 (11.1), P < .001. CONCLUSIONS: COGI summarizes three key aspects of CGM data into a concise metric that could be utilized to evaluate the quality of glucose control and to demonstrate the incremental benefit of a wide range of treatment modalities

    Unsupervised home use of an overnight closed-loop system over 3-4 weeks: a pooled analysis of randomized controlled studies in adults and adolescents with type 1 diabetes.

    Get PDF
    AIMS: To compare overnight closed-loop and sensor-augmented pump therapy in patients with type 1 diabetes by combining data collected during free-living unsupervised randomized crossover home studies. METHODS: A total of 40 participants with type 1 diabetes, of whom 24 were adults [mean ± standard deviation (s.d.) age 43 ± 12 years and glycated haemoglobin (HbA1c) 8.0 ± 0.9%] and 16 were adolescents (mean ± s.d. age 15.6 ± 3.6 years and HbA1c 8.1 ± 0.8%), underwent two periods of sensor-augmented pump therapy in the home setting, in combination with or without an overnight closed-loop insulin delivery system that uses a model predictive control algorithm to direct insulin delivery. The order of the two interventions was random; each period lasted 4 weeks in adults and 3 weeks in adolescents. The primary outcome was time during which sensor glucose readings were in the target range of 3.9-8.0 mmol/l. RESULTS: The proportion of time when sensor glucose was in the target range (3.9-8.0 mmol/l) overnight (between 24:00 and 08:00 hours) was 18.5% greater during closed-loop insulin delivery than during sensor-augmented therapy (p < 0.001). Closed-loop therapy significantly reduced mean overnight glucose levels by 0.9 mmol/l (p < 0.001), with no difference in glycaemic variability, as measured by the standard deviation of sensor glucose. Time spent above the target range was reduced (p = 0.001), as was time spent in hypoglycaemia (<3.9 mmol/l; p = 0.014) during closed-loop therapy. Lower mean overnight glucose levels during closed-loop therapy were brought about by increased overnight insulin delivery (p < 0.001) without changes to the total daily delivery (p = 0.84). CONCLUSION: Overnight closed-loop insulin therapy at home in adults and adolescents with type 1 diabetes is feasible, showing improvements in glucose control and reducing the risk of nocturnal hypoglycaemia.Juvenile Diabetes Research Foundation (#22-2009-802) and Diabetes UK (BDA07/0003549) with additional support for the Artificial Pancreas work by National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621), and National Institute for Health Research Cambridge Biomedical Research Centre. Abbott Diabetes Care supplied continuous glucose delivery devices and sensors and modified devices to facilitate real-time connectivity.This if the final version of the article. It was originally published by Wiley in Diabetes, Obesity and Metabolism at http://onlinelibrary.wiley.com/doi/10.1111/dom.12427/abstrac

    Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial.

    Get PDF
    OBJECTIVE: To evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes. RESEARCH DESIGN AND METHODS: Overnight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12-18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h. RESULTS: Closed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range -9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range -4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop. CONCLUSIONS: Unsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.Supported by Juvenile Diabetes Research Foundation (#22-2006-1113, #22-2007-1801, #22-2009-801, #22-2009-802), Diabetes UK (BDA07/0003549), National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621), Medical Research Council Centre for Obesity and Related metabolic Diseases, and National Institute for Health Research Cambridge Biomedical Research Centre. Abbott Diabetes Care supplied continuous glucose delivery devices and sensors and modified devices to facilitate real-time connectivity.This is the final published version, also available from the American Diabetes Association at http://care.diabetesjournals.org/content/37/5/1204

    Variability of Insulin Requirements Over 12 Weeks of Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes.

    Get PDF
    OBJECTIVE: To quantify variability of insulin requirements during closed-loop insulin delivery. RESEARCH DESIGN AND METHODS: We retrospectively analyzed overnight, daytime, and total daily insulin amounts delivered during a multicenter closed-loop trial involving 32 adults with type 1 diabetes. Participants applied hybrid day-and-night closed-loop insulin delivery under free-living home conditions over 12 weeks. The coefficient of variation was adopted to measure variability of insulin requirements in individual subjects. RESULTS: Data were analyzed from 1,918 nights, 1,883 daytime periods and 1,564 total days characterized by closed-loop use over 85% of time. Variability of overnight insulin requirements (mean [SD] coefficient of variation 31% [4]) was nearly twice as high as variability of total daily requirements (17% [3], P < 0.001) and was also higher than variability of daytime insulin requirements (22% [4], P < 0.001). CONCLUSIONS: Overnight insulin requirements were significantly more variable than daytime and total daily amounts. This may explain why some people with type 1 diabetes report frustrating variability in morning glycemia.Seventh Framework Programme of the European Union (ICT FP7- 247138). Additional support for the Artificial Pancreas work by JDRF, National Institute for Health Research Cambridge Biomedical Research Centre and Wellcome Strategic Award (100574/Z/12/Z). Abbott Diabetes Care supplied discounted continuous glucose monitoring devices, sensors, and communication protocol to facilitate real-time connectivity. We acknowledge support by the staff at the Addenbrooke’s Wellcome Trust Clinical Research Facility. Jasdip Mangat and John Lum (Jaeb Center) supported development and validation of the closed-loop system. Josephine Hayes (University of Cambridge) provided administrative support. Karen Whitehead (University of Cambridge) provided laboratory support. We acknowledge support by the staff at Profil Institut; Krisztina Schmitz-Grozs provided support as a research physician, Martina Haase supported the study as an insulin pump expert, and Maren Luebkert, Kirstin Kuschma and Elke Przetak provided administrative, coordinating and documentation support.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/dc15-262
    corecore