89 research outputs found

    Чверть століття на ниві освіти

    Get PDF
    Наталія Купріянівна Місяць – відомий український вчений-мовознавець, викладач та організатор освіти на Житомирщині. Чверть століття, починаючи вже з далекого 1975 року, життя та діяльність Наталії Куприянівні тісно пов’язані з філологічним факультетом Житомирського едуніверситету імені Івана Франка

    Prevalence of Echocardiographic Evidence of Trace Mitral and Aortic Valve Regurgitation in 50 Clinically Healthy, Young Adult Labrador Retrievers without Heart Murmur

    Get PDF
    Background-Though physiologic regurgitation of the right-sided cardiac valves is well recognized in dogs and other mammals, the prevalence of trace insufficiency of the mitral and aortic valves in clinically healthy, young adult dogs is unknown. Methods-In this observational cross-sectional study, 50 clinically healthy, young adult Labrador retrievers without an audible heart murmur were enrolled. All dogs were bred and owned by a single organization. Cardiac screening was requested for all dogs that were intended for breeding. These dogs underwent a cardiac auscultation and transthoracic echocardiography by a veterinary cardiology specialist. If mitral or aortic valve regurgitation was noticed, the jet size was subjectively assessed on color Doppler echocardiography. Pedigree analysis was performed to reveal a possible hereditary background of mitral valve regurgitation. Results-The prevalence of trivial mitral valve regurgitation was 52% with no significant predisposition to gender ( p = 0.86) or haircoat color ( p = 0.68). The prevalence of aortic valve regurgitation was 4%. Pedigree analysis for mitral valve regurgitation showed familial clustering, suggesting a hereditary background of the trait. Conclusions-The prevalence of silent trace mitral valve regurgitation in young adult Labrador retrievers was high. Because the regurgitant jet was trivial in all dogs, it is probably physiologic

    Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7

    Get PDF
    Background: Inbreeding and population bottlenecks in the ancestry of Friesian horses has led to health issues such as dwarfism. The limbs of dwarfs are short and the ribs are protruding inwards at the costochondral junction, while the head and back appear normal. A striking feature of the condition is the flexor tendon laxity that leads to hyperextension of the fetlock joints. The growth plates of dwarfs display disorganized and thickened chondrocyte columns. The aim of this study was to identify the gene defect that causes the recessively inherited trait in Friesian horses to understand the disease process at the molecular level. Results: We have localized the genetic cause of the dwarfism phenotype by a genome wide approach to a 3 Mb region on the p-arm of equine chromosome 14. The DNA of two dwarfs and one control Friesian horse was sequenced completely and we identified the missense mutation ECA14:g.4535550C> T that cosegregated with the phenotype in all Friesians analyzed. The mutation leads to the amino acid substitution p.(Arg17Lys) of xylosylprotein beta 1,4-galactosyltransferase 7 encoded by B4GALT7. The protein is one of the enzymes that synthesize the tetrasaccharide linker between protein and glycosaminoglycan moieties of proteoglycans of the extracellular matrix. The mutation not only affects a conserved arginine codon but also the last nucleotide of the first exon of the gene and we show that it impedes splicing of the primary transcript in cultured fibroblasts from a heterozygous horse. As a result, the level of B4GALT7 mRNA in fibroblasts from a dwarf is only 2 % compared to normal levels. Mutations in B4GALT7 in humans are associated with Ehlers-Danlos syndrome progeroid type 1 and Larsen of Reunion Island syndrome. Growth retardation and ligamentous laxity are common manifestations of these syndromes. Conclusions: We suggest that the identified mutation of equine B4GALT7 leads to the typical dwarfism phenotype in Friesian horses due to deficient splicing of transcripts of the gene. The mutated gene implicates the extracellular matrix in the regular organization of chrondrocyte columns of the growth plate. Conservation of individual amino acids may not be necessary at the protein level but instead may reflect underlying conservation of nucleotide sequence that are required for efficient splicing

    Validation of a Chromosome 14 Risk Haplotype for Idiopathic Epilepsy in the Belgian Shepherd Dog Found to Be Associated with an Insertion in the RAPGEF5 Gene

    Get PDF
    An idiopathic epilepsy (IE) risk haplotype on canine chromosome (CFA) 14 has been reported to interact with the CFA37 common risk haplotype in the Belgian shepherd (BS). Additional IE cases and control dogs were genotyped for the risk haplotypes to validate these previous findings. In the new cohort, the interaction between the two regions significantly elevated IE risk. When the haplotypes were analyzed individually, particular haplotypes on both CFA14 (ACTG) and 37 (GG) were associated with elevated IE risk, though only the CFA37 AA was significantly associated (p < 0.003) with reduced risk in the new cohort. However, the CFA14 ACTG risk was statistically significant when the new and previous cohort data were combined. The frequency of the ACTG haplotype was four-fold higher in BS dogs than in other breeds. Whole genome sequence analysis revealed that a 3-base pair predicted disruptive insertion in the RAPGEF5 gene, which is adjacent to the CFA14 risk haplotype. RAPGEF5 is involved in the Wnt-β-catenin signaling pathway that is crucial for normal brain function. Although this risk variant does not fully predict the likelihood of a BS developing IE, the association with a variant in a candidate gene may provide insight into the genetic control of canine IE

    A novel IBA57 variant is associated with mitochondrial iron–sulfur protein deficiency and necrotizing myelopathy in dogs

    Get PDF
    Introduction: Hereditary necrotizing myelopathy (HNM) in young Kooiker dogs is characterized by progressive ataxia and paralysis with autosomal recessive inheritance. The basic genetic defect is unknown. We investigated the possible cause by a genome-wide analysis using six affected and 17 unrelated unaffected Kooiker dogs and by functional follow-up studies.Method: The HNM locus was mapped by a case–control study using a dense SNP array and confirmed by linkage analysis of two pedigrees. The gene exons in the critical region were analyzed by next-generation sequencing. The functional effect of the candidate canine IBA57 pathogenic variant was biochemically examined in an established HeLa cell culture model in which the endogenous IBA75 gene product was depleted by RNAi.Results: The basic defect was localized in the centromeric 5 Mb region of canine chromosome 14. The most associated SNP co-segregated fully with HNM and reached an LOD score of 6.1. A candidate pathogenic mutation was found in the iron–sulfur cluster assembly gene IBA57 and led to the amino acid substitution R147W. The expression of human IBA57 harboring the canine R147W exchange could only partially restore the biochemical defects of several mitochondrial [4Fe-4S] proteins upon IBA57 depletion, showing that the mutant protein is functionally impaired.Discussion: Pathogenic variants in human IBA57 cause multiple mitochondrial dysfunction syndrome 3 (MMDS3), a neurodegenerative disorder with distant similarities to HNM. The incomplete functional complementation of IBA57-depleted human cells by IBA57-R147W identifies the DNA mutation in affected Kooiker dogs as the genetic cause of HNM. Our findings further expand the phenotypic spectrum of pathogenic IBA57 variants

    A novel IBA57 variant is associated with mitochondrial iron-sulfur protein deficiency and necrotizing myelopathy in dogs

    Get PDF
    Introduction: Hereditary necrotizing myelopathy (HNM) in young Kooiker dogs is characterized by progressive ataxia and paralysis with autosomal recessive inheritance. The basic genetic defect is unknown. We investigated the possible cause by a genome-wide analysis using six affected and 17 unrelated unaffected Kooiker dogs and by functional follow-up studies. Method: The HNM locus was mapped by a case-control study using a dense SNP array and confirmed by linkage analysis of two pedigrees. The gene exons in the critical region were analyzed by next-generation sequencing. The functional effect of the candidate canine IBA57 pathogenic variant was biochemically examined in an established HeLa cell culture model in which the endogenous IBA75 gene product was depleted by RNAi. Results: The basic defect was localized in the centromeric 5 Mb region of canine chromosome 14. The most associated SNP co-segregated fully with HNM and reached an LOD score of 6.1. A candidate pathogenic mutation was found in the iron-sulfur cluster assembly gene IBA57 and led to the amino acid substitution R147W. The expression of human IBA57 harboring the canine R147W exchange could only partially restore the biochemical defects of several mitochondrial [4Fe-4S] proteins upon IBA57 depletion, showing that the mutant protein is functionally impaired. Discussion: Pathogenic variants in human IBA57 cause multiple mitochondrial dysfunction syndrome 3 (MMDS3), a neurodegenerative disorder with distant similarities to HNM. The incomplete functional complementation of IBA57-depleted human cells by IBA57-R147W identifies the DNA mutation in affected Kooiker dogs as the genetic cause of HNM. Our findings further expand the phenotypic spectrum of pathogenic IBA57 variants

    Phenotypic characterization of idiopathic epilepsy and epilepsy of unknown cause in Irish Setters

    Get PDF
    Canine epileptic seizures are common neurological symptom presenting to veterinary practice. Idiopathic epilepsy (IE) with a suspected genetic background has been reported in several dog breeds. Although it has been reported in the Irish Setter (IS), the phenotypic characteristics have not yet been described. The aim of this study was to characterize the phenotype of IE in this breed and to trace its mode of inheritance. Owners of IS were requested to fill in a questionnaire via the Dutch Irish Setter Club concerning the epileptic seizures in their dogs. The data was assessed retrospectively using descriptive statistics. Forty-eight privately owned IS dogs fulfilling tier I criteria for IE according to the International Veterinary Epilepsy Task Force of both sexes were included in the study. The mean age of seizure onset was 41 months. Five of the dogs included in the study had an onset of seizures >6 years of age. These dogs were classified with epilepsy of unknown cause (EUC). Primary generalized tonic-clonic seizures were the most common type of seizure and were seen in almost all dogs. Cluster seizures were reported in 54% of the studied population. Most owners reported pre- (56%) and post-ictal (97%) signs in their dogs. A pedigree analysis of one subpopulation was performed and traced the lineage of 13 affected IS. A segregation analysis of this population rejected a simple autosomal recessive inheritance pattern. The present study supports the occurrence of IE and EUC in the IS. The results provide clinical insight into epileptic seizures in this breed and may be a starting point for further, including genetic, analysis
    corecore