82,478 research outputs found

    Fully anharmonic infrared cascade spectra of polycyclic aromatic hydrocarbons

    Get PDF
    The infrared (IR) emission of polycyclic aromatic hydrocarbons (PAHs) permeates our universe; astronomers have detected the IR signatures of PAHs around many interstellar objects. The IR emission of interstellar PAHs differs from their emission as seen under conditions on Earth, as they emit through a collisionless cascade down through their excited vibrational states from high internal energies. The difficulty in reproducing interstellar conditions in the laboratory results in a reliance on theoretical techniques. However, the size and complexity of PAHs requires careful consideration when producing the theoretical spectra. In this work we outline the theoretical methods necessary to lead to a fully theoretical IR cascade spectra of PAHs including: an anharmonic second order vibrational perturbation theory (VPT2) treatment; the inclusion of Fermi resonances through polyads; and the calculation of anharmonic temperature band shifts and broadenings (including resonances) through a Wang--Landau approach. We also suggest a simplified scheme to calculate vibrational emission spectra that retains the essential characteristics of the full IR cascade treatment and can directly transform low temperature absorption spectra in IR cascade spectra. Additionally we show that past astronomical models were in error in assuming a 15 cm−1^{-1} correction was needed to account for anharmonic emission effects

    Charge and spin density modulations in semiconductor quantum wires

    Full text link
    We investigate static charge and spin density modulation patterns along a ferromagnet/semiconductor single junction quantum wire in the presence of spin-orbit coupling. Coherent scattering theory is used to calculate the charge and spin densities in the ballistic regime. The observed oscillatory behavior is explained in terms of the symmetry of the charge and spin distributions of eigenstates in the semiconductor quantum wire. Also, we discuss the condition that these charge and spin density oscillations can be observed experimentally.Comment: 7 pages, 8 figures (low-resolution

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure

    Application of Volcano Plots in Analyses of mRNA Differential Expressions with Microarrays

    Full text link
    Volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log10(p-value) from the t test). We review the basic and an interactive use of the volcano plot, and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide an unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility to apply volcano plots to other fields beyond microarray.Comment: 8 figure

    Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene

    Get PDF
    Two trinuclear copper [CuICuICuI(L)]1+ complexes have been prepared with the multidentate ligands (L) 3,3'-(1,4-diazepane-1,4-diyl)bis(1-((2-(dimethylamino)ethyl)(methyl)amino)propan-2-ol) (7-Me) and (3,3'-(1,4-diazepane-1,4-diyl)bis(1-((2-(diethylamino) ethyl)(ethyl) amino)propan-2-ol) (7-Et) as models for the active site of the particulate methane monooxygenase (pMMO). The ligands were designed to form the proper spatial and electronic geometry to harness a "singlet oxene," according to the mechanism previously suggested by our laboratory. Consistent with the design strategy, both [CuICuICuI(L)]1+ reacted with dioxygen to form a putative bis(µ3-oxo)CuIICuIICuIII species, capable of facile O-atom insertion across the central C-C bond of benzil and 2,3-butanedione at ambient temperature and pressure. These complexes also catalyze facile O-atom transfer to the C-H bond of CH3CN to form glycolonitrile. These results, together with our recent biochemical studies on pMMO, provide support for our hypothesis that the hydroxylation site of pMMO contains a trinuclear copper cluster that mediates C-H bond activation by a singlet oxene mechanism

    Optical study on doped polyaniline composite films

    Full text link
    Localization driven by disorder has a strong influence on the conducting property of conducting polymer. A class of authors hold the opinion that disorder in the material is homogeneous and conducting polymer is disordered metal close to Anderson-Mott Metal-Insulator transition, while others treat the disorder as inhomogeneous and have the conclusion that conducting polymer is a composite of ordered metallic regions and disordered insulating regions. The morphology of conducting polymers is an important factor that have influence on the type and extent of disorder. Different protonic acids used as dopants and moisture have affection on polymer chain arrangement and interchain interactions. A PANI-CSA film, two PANI-CSA/PANI-DBSA composite films with different dopants ratio, and one of the composite films with different moisture content are studied. Absolute reflectivity measurements are performed on the films. Optical conductivity and the real part of dielectric function are calculated by Kramers-Kronig(KK) relations. σ1(ω)\sigma_1(\omega) and ϵ1(ω)\epsilon_1(\omega) derivate from simple Drude model in low frequency range and tendencies of the three sample are different and non-monotonic. The Localization Modified Drude model(LMD) in the framework of Anderson-Mott theory can not give a good fit to the experimental data. By introducing a distribution of relaxation time into LMD, reasonable fits for all three samples are obtained. This result supports the inhomogeneous picture.Comment: 6 figures, 7 page
    • …
    corecore