9,635 research outputs found
On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process
Quantum metrology uses quantum states with no classical counterpart to
measure a physical quantity with extraordinary sensitivity or precision. Most
metrology schemes measure a single parameter of a dynamical process by probing
it with a specially designed quantum state. The success of such a scheme
usually relies on the process belonging to a particular one-parameter family.
If this assumption is violated, or if the goal is to measure more than one
parameter, a different quantum state may perform better. In the most extreme
case, we know nothing about the process and wish to learn everything. This
requires quantum process tomography, which demands an informationally-complete
set of probe states. It is very convenient if this set is group-covariant --
i.e., each element is generated by applying an element of the quantum system's
natural symmetry group to a single fixed fiducial state. In this paper, we
consider metrology with 2-photon ("biphoton") states, and report experimental
studies of different states' sensitivity to small, unknown collective SU(2)
rotations ("SU(2) jitter"). Maximally entangled N00N states are the most
sensitive detectors of such a rotation, yet they are also among the worst at
fully characterizing an a-priori unknown process. We identify (and confirm
experimentally) the best SU(2)-covariant set for process tomography; these
states are all less entangled than the N00N state, and are characterized by the
fact that they form a 2-design.Comment: 10 pages, 5 figure
Superoscillations and tunneling times
It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To exemplify that, we
consider a toy model which allows for a wave packet to travel, in zero time and
negligible distortion a distance arbitrarily larger than the width of the wave
packet. The peak is shown to result from a superoscillatory superposition at
the tail. Similar reasoning applies to the dwell time.Comment: 12 page
Adaptive quantum state tomography improves accuracy quadratically
We introduce a simple protocol for adaptive quantum state tomography, which
reduces the worst-case infidelity between the estimate and the true state from
to . It uses a single adaptation step and just one
extra measurement setting. In a linear optical qubit experiment, we demonstrate
a full order of magnitude reduction in infidelity (from to ) for
a modest number of samples ().Comment: 8 pages, 7 figure
Safety and efficacy of stereotactic body radiation therapy in the treatment of pulmonary metastases from high grade sarcoma.
Introduction. Patients with high-grade sarcoma (HGS) frequently develop metastatic disease thus limiting their long-term survival. Lung metastases (LM) have historically been treated with surgical resection (metastasectomy). A potential alternative for controlling LM could be stereotactic body radiation therapy (SBRT). We evaluated the outcomes from our institutional experience utilizing SBRT. Methods. Sixteen consecutive patients with LM from HGS were treated with SBRT between 2009 and 2011. Routine radiographic and clinical follow-up was performed. Local failure was defined as CT progression on 2 consecutive scans or growth after initial shrinkage. Radiation pneumonitis and radiation esophagitis were scored using Common Toxicity Criteria (CTC) version 3.0. Results. All 16 patients received chemotherapy, and a subset (38%) also underwent prior pulmonary metastasectomy. Median patient age was 56 (12-85), and median follow-up time was 20 months (range 3-43). A total of 25 lesions were treated and evaluable for this analysis. Most common histologies were leiomyosarcoma (28%), synovial sarcoma (20%), and osteosarcoma (16%). Median SBRT prescription dose was 54âGy (36-54) in 3-4 fractions. At 43 months, local control was 94%. No patient experienced G2-4 radiation pneumonitis, and no patient experienced radiation esophagitis. Conclusions. Our retrospective experience suggests that SBRT for LM from HGS provides excellent local control and minimal toxicity
Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach.
Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique
Scalable Spatial Super-Resolution using Entangled Photons
N00N states -- maximally path-entangled states of N photons -- exhibit
spatial interference patterns sharper than any classical interference pattern.
This is known as super-resolution. However, even with perfectly efficient
number-resolving detectors, the detection efficiency of all previously
demonstrated methods to measure such interference decreases exponentially with
the number of photons in the N00N state, often leading to the conclusion that
N00N states are unsuitable for spatial measurements. Here, we create spatial
super-resolution fringes with two-, three-, and four-photon N00N states, and
demonstrate a scalable implementation of the so-called ``optical centroid
measurement'' which provides an in-principle perfect detection efficiency.
Moreover, we compare the N00N-state interference to the corresponding classical
super-resolution interference. Although both provide the same increase in
spatial frequency, the visibility of the classical fringes decreases
exponentially with the number of detected photons, while the visibility of our
experimentally measured N00N-state super-resolution fringes remains
approximately constant with N. Our implementation of the optical centroid
measurement is a scalable method to measure high photon-number quantum
interference, an essential step forward for quantum-enhanced measurements,
overcoming what was believed to be a fundamental challenge to quantum
metrology
Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report.
We present a case of durable local control achieved in a patient treated with stereotactic magnetic resonance-guided adaptive radiation therapy (SMART) for an abdominal lymph node in the setting of oligometastatic breast cancer. A 50-year-old woman with a history of triple positive metastatic invasive ductal carcinoma of the left breast, stage IV (T3N2M1), underwent neoadjuvant chemotherapy, mastectomy, adjuvant radiotherapy and maintenance hormonal treatment with HER2 targeted therapies. At 20 months after definitive treatment of her primary, imaging showed an isolated progressive enlargement of lymph nodes between hepatic segment V/IVB and the neck of the pancreas. Radiofrequency ablation was considered, however, this approach was decided not to be optimal due to the proximity to stomach, and pancreatic duct. The patient was treated with SMART for 40 Gray in 5 fractions. Two and a half years later, the patient remains without evidence of disease progression. She experienced Grade 2 acute and late toxicity that was successfully managed with medications. This experience shows that SMART is a feasible and effective treatment to control the abdominal oligometastatic disease for breast cancer
Nonclassical Properties of Coherent States
It is demonstrated that a weak measurement of the squared quadrature
observable may yield negative values for coherent states. This result cannot be
reproduced by a classical theory where quadratures are stochastic -numbers.
The real part of the weak value is a conditional moment of the Margenau-Hill
distribution. The nonclassicality of coherent states can be associated with
negative values of the Margenau-Hill distribution. A more general type of weak
measurement is considered, where the pointer can be in an arbitrary state, pure
or mixed.Comment: 4 pages. Some arguments rewritten, reference added to
quant-ph/0402050. Conclusion unchange
Microbial gardening in the ocean's twilight zone : Detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus
Funded by NERC NE/K001833/1 âOceans 2025âPeer reviewedPublisher PD
- âŠ