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We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-
case infidelity (1 − F (ρ̂, ρ)) between the estimate and the true state from O(1/

√
N) to O(1/N).

It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit
experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.1% to 0.01%)
for a modest number of samples (N ≈ 3× 104).

PACS numbers: 42.50.Dv,42.50.Xa

Quantum information processing requires reliable, re-
peatable preparation and transformation of quantum
states. Quantum state tomography is used to identify the
density matrix ρ that was prepared by such a process.
No finite ensemble of N samples is sufficient to uniquely
identify ρ, so we estimate it, reporting either a single
state ρ̂ that is “close” to ρ with high probability [1–5],
or a confidence region of nonzero radius that contains ρ
with high probability [6, 7]. Both approaches must ac-
cept some inaccuracy (the discrepancy between ρ̂ and ρ)
or imprecision (the diameter of the confidence region).
The universal goal of state tomography is to minimize
this discrepancy, which has been quantified with various
metrics (e.g., trace norm, fidelity, relative entropy, etc.).
In this paper, we focus on the particularly well-motivated
quantum infidelity,

1− F (ρ̂, ρ) = 1− Tr

(√√
ρρ̂
√
ρ

)2

, (1)

and show that as N →∞, adaptive tomography reduces
expected infidelity from O(1/

√
N) to O(1/N).

Unlike alternative metrics, 1 − F (ρ̂, ρ) quantifies an
important operational quantity: how many copies are re-
quired to reliably distinguish ρ̂ from ρ?. Without doing
justice to the rich body of research behind this simple
statement (e.g., [8–13]. . . ), we summarize as follows. The
discrepancy between ρ̂ and ρ given a single sample is well
described by the trace distance, |ρ̂ − ρ|1. But tomogra-
phy (i) requires N � 1 samples; (ii) is used to predict
experiments on N � 1 samples; and (iii) yields errors
that cannot be detected without N � 1 samples. So the
operationally relevant quantity is

∣∣ρ̂⊗N − ρ⊗N ∣∣
1
, which

for N � 1 behaves as 1− e−D(ρ̂,ρ)N . The exponent D is
the quantum Chernoff bound [13], and N ≈ D log(1/ε)
samples are necessary and sufficient to distinguish ρ
from ρ̂ with confidence 1 − ε. D is tightly bounded by
the logarithm of the fidelity (see [12], Eq. 28); when

1− F (ρ̂, ρ)� 1 (which should always be true in tomog-
raphy!), − log(F ) ≈ 1− F and

1− F
2
≤ D ≤ 1− F. (2)

Thus, 1−F really does (almost uniquely) quantify tomo-
graphic inaccuracy; N ≈ [1− F (ρ̂, ρ)]−1 samples are (up
to a factor of 2) necessary and sufficient [14] to falsify
ρ̂. In contrast, Hilbert-Schmidt- and trace-distance have
no such N -sample meaning, and give wildly misleading
metrics of tomographic error.

We show that standard tomography with static mea-
surements can’t beat 1 − F = O(1/

√
N) as N → ∞

for a large and important class of states, then intro-
duce and explain a simple adaptive protocol that achieves
1−F = O(1/N) for every state. Finally, we demonstrate
this effect in a linear optical experiment, achieving a 10-
fold improvement in infidelity (from 0.1% to 0.01% with
N = 3 × 104 measurements) over standard tomography.
We believe this protocol will have wide application, par-
ticularly in situations where the rate of data collection
is small, such as post-selected optical systems (e.g. [15],
where data were collected at approximately 9 measure-
ments per hour).

Adaptivity has been proposed in various contexts.
Single-step adaptive tomography was first analyzed by
[16], then refined in [17–19]. A scheme similar to ours
(and its efficacy for pure states) was analyzed in [20].
Ref. [21] recently treated state estimation as parameter
estimation, obtaining results complementary, but largely
orthogonal, to those reported here. Here, we present
both an experimental demonstration and simple, self-
contained derivation of: (1) why quantum fidelity is sig-
nificant; (2) why adaptive tomography achieves far bet-
ter infidelity; and (3) how the adaptation should be done.
We optimize worst-case infidelity over all states, not just
pure states [20] or specific ensembles of mixed states (e.g.
Ref. [18] achieved high average fidelity, but low fidelity
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on nearly-pure states).

ADAPTIVE TOMOGRAPHY

Static tomography uses data from a fixed set of mea-
surements. Different measurements yield subtly different
tomographic accuracy [22], but to leading order, “good”
protocols for single-qubit tomography provide equal in-
formation [23] about every component of the unknown
density matrix ρ,

ρ =
1

2
(1l + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz) . (3)

The canonical example involves measuring the three
Pauli operators (σx, σy, σz). This minimizes the vari-
ance of the estimator ρ̂ – but not the expected infidelity,
for two reasons.

First, the variance of the estimate ρ̂ depends also on
ρ itself. Consider the linear inversion estimator ρ̂lin,
defined by estimating 〈σz〉 =

n↑−n↓
n↑+n↓

(and similarly for

〈σx〉 and 〈σy〉), and substituting into Eq. 3. Each
measurement behaves like N/3 flips of a coin with bias
pk = 1

2 (1 + 〈σk〉), and yields

p̂k = pk ±
√

3

N

√
pk(1− pk) (4)

⇒ 〈σk〉estimated = 〈σk〉true ±
√

3

2N

√
1− 〈σk〉2. (5)

When 〈σk〉 ≈ 0, its estimate has a large variance – but
when 〈σk〉 ≈ ±1, the variance is very small. As a result,
the variance of ρ̂ around ρ is anisotropic and ρ-dependent
(see Fig. 1a).

Second, the dependence of infidelity on the error, ∆ =
ρ̂ − ρ, also varies with ρ. Infidelity is hypersensitive to
misestimation of small eigenvalues. A Taylor expansion
of 1− F (ρ̂, ρ) yields (in terms of ρ’s eigenbasis {|i〉}),

1−F (ρ, ρ+ ε∆) =
1

4

∑
i,j

〈i|∆ |j〉2

〈i| ρ |i〉+ 〈j| ρ |j〉
+O(∆3). (6)

Infidelity is quadratic in ∆ – except that as an eigenvalue
〈i| ρ |i〉 approaches 0, its sensitivity to 〈i|∆ |i〉 diverges;
1− F becomes linear [24] in ∆:

1− F (ρ, ρ+ ε∆) = ε
∑

i: 〈i|ρ|i〉=0

〈i|∆ |i〉+O(∆2). (7)

To minimize infidelity, we must accurately estimate the
small eigenvalues of ρ, particularly those that are (or
appear to be) zero. For states deep within the Bloch
sphere, static tomography achieves infidelity of O(1/N)
[16, 25]. Typical errors scale as |∆| = O(1/

√
N) (Eq. 5),

and infidelity scales as 1 − F = O(|∆|2). But for states
with eigenvalues less than O(1/

√
N), infidelity scales as

FIG. 1. Two features of qubit tomography with Pauli mea-
surements (shown for an equatorial cross-section of the Bloch
sphere): (a) The distribution or “scatter” of any unbiased es-
timator ρ̂ (depicted by dull red ellipses) varies with the true
state ρ (black stars at the center of ellipses); (b) The expected
infidelity between ρ̂ and ρ as a function of ρ. Within the Bloch
sphere, the expected infidelity is O (1/N). But in a thin shell

of nearly-pure states (of thickness O
(

1/
√
N
)

), it scales as

O
(

1/
√
N
)

– except when ρ is aligned with a measurement

axis (Pauli X, Y , or Z).

O(1/
√
N). Quantum information processing relies on

nearly-pure states, so this poor scaling is significant.

To achieve better performance, we observe that if ρ is
diagonal in one of the measured bases (e.g., σz), then
infidelity always scales as O(1/N). The increased sensi-
tivity of 1−F to error in small eigenvalues (Eq. 6) is pre-
cisely canceled by the reduced inaccuracy that accompa-
nies a highly biased measurement-outcome distribution
(Eq. 5). This suggests an obvious (if näıve) solution: we
should simply ensure that we measure the diagonal basis
of ρ!

This is unreasonable – knowing ρ would render tomog-
raphy pointless. But we can perform standard tomog-
raphy on N0 < N samples, get a preliminary estimate
ρ̂0, and measure the remaining N − N0 samples so that
one basis diagonalizes ρ̂0. This measurement will not
diagonalize ρ exactly, but if N0 � 1 it will be fairly
close. The angle θ between the eigenbases of ρ and ρ̂0 is
O(|∆|) = O(1/

√
N0). This implies that if ρ has an eigen-

vector |ψk〉 with eigenvalue λk = 0, then correspond-
ing measurement outcome |φk〉〈φk| will have probability
at most pk = sin2 θ ≈ θ2 = O(1/N0). Since we make
this measurement on O(N −N0) copies [26], the final er-
ror in the estimated p̂k (and therefore in the eigenvalue
λk) is O(1/

√
N0(N −N0)). So using a constant fraction

N0 = αN of the available samples for the preliminary
estimation should yield O(1/N) infidelity for all states.

A similar protocol was suggested in Ref. [18], but that
analysis concluded that N0 ∝ Np for p ≥ 2

3 would be
sufficient. This works for average infidelity over a partic-
ular ensemble, but yields 1 − F = O(N−5/6) for almost
all nearly-pure states.
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SIMULATION RESULTS

We performed numerical simulations of single-qubit to-
mography using four different protocols: (1) standard
fixed-measurement tomography; (2) adaptive tomogra-
phy with N0 = N2/3, as proposed in [18]; (3) adap-
tive tomography with N0 = αN (for a range of α);
and (4) “known basis” tomography, wherein we cheat
by aligning our measurement frame with ρ’s eigenbasis
(for all N samples). We simulated many true states
ρ, but present a representative case: a pure state with
(〈σx〉, 〈σy〉, 〈σz〉) = (0.5, 1/

√
2, 0.5)

|↗〉 =
1

2

( √
3

1√
3
− 2i√

6

)
(8)

Our results are not particularly sensitive to the exact
estimator used; we used maximum-likelihood estimation
(MLE) with a quadratic approximation to the negative
loglikelihood function:

l(ρ) = − logL(ρ) ≈
3∑
k=1

Nk(Tr[ρEk]− fk)2

fk(1− fk)
, (9)

where fk = nk/Nk are the observed frequencies of the
+1 eigenvectors of the three Pauli operators σk, Ek is
the corresponding projector, and Nk is the number of
samples on which σk was measured. Convex optimization
(in MATLAB [27]) was used to find ρ̂MLE. Results were
averaged over many (typically 150) randomly generated
measurement records.

Figure 2 shows average infidelity versusN . We fit these
simulated data to power laws of the form 1− F = βNp,
and found p = −0.513 ± 0.006 (for static tomogra-
phy), p = −0.868± 0.008 (for adaptive tomography with
N0 = N2/3), p = −0.980 ± 0.006 (for adaptive tomog-
raphy with N0 = 0.5N), and p = −0.993 ± 0.09 (for
known-basis tomography). These results are not signifi-
cantly different [28] from predictions of the simple theory
(p = − 1

2 ,−
5
6 , 1, and 1, respectively). The borderline-

significant discrepancy is, we believe, due to boundary
effects (ρ̂MLE is constrained to be positive). We also var-
ied α = N0/N (Fig. 2, inset) and found that α = 1

2
optimizes the prefactor (β).

EXPERIMENTAL RESULTS

We implemented our protocol experimentally in lin-
ear optics (Fig. 3). Using type-1 spontaneous paramet-
ric down conversion in a nonlinear crystal, photon pairs
were created. One of these photons was sent immedi-
ately to a single photon counting module (SPCM) to
act as a trigger. The second photon was sent through
a Glan-Thomson polarizer to prepare it in a state of

FIG. 2. Average infidelity 1 − F (ρ̂, ρ) vs. sample size N for
Monte Carlo simulations of four different tomographic pro-
cotocols: standard tomography (black), the procedure pro-

posed in [18] using N0 = N2/3 (red), our procedure using
N0 = N/2 (blue), and “known basis” tomography (green).
Both adaptive procedures clearly outperform static tomog-
raphy, but our procedure clearly outperforms the N0 = N2/3

approach, and matches the asymptotic scaling of known-basis
tomography. The inset shows the dependence of the prefactor
(β) on α = N0/N .

very pure linear polarization. Computer-controlled wave-
plates were first used to prepare the polarization state of
the photon, and subsequently used in tandem with a po-
larization beamsplitter to project onto any state on the
Bloch sphere.

FIG. 3. Spontaneous parametric downconversion is per-
formed by pumping a nonlinear BBO crystal with linearly
polarized light. One photon is sent directly to a detector as
a trigger. A rotation using a quarter-half waveplate combi-
nation prepares the other photon in any desired polarization
state. Finally, a projective measurement onto any axis of
the Bloch sphere is performed by a quarter-half waveplate
combination followed by a polarizing beamsplitter. The mea-
surement waveplates are connected to a computer to enable
adaptation.

We compared static and adaptive tomography proto-
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cols on a measured state given (in the H/V basis) by

ρ =

(
0.7711 0.2010 + 0.3624i

0.2010− 0.3624i 0.2289

)
, (10)

which has purity Tr(ρ2) = 0.991 and fidelity F = 0.992
with |↗〉 (see Eq. 8). We identified ρ to within an un-

certainty which is at most O(1/
√
Ñ) using one very long

(Ñ = 107) static tomography experiment, whose over-
whelming size ensures accuracy sufficient to calibrate the
other experiments, all of which involve N ≤ 3× 104 pho-
tons.

Our “standard” (static) protocol involved repeatedly
preparing our target state, collecting N/3 photons at
each of the three measurement settings corresponding to
σx, σy, and σz, and computing ρ̂MLE as outlined in [29].
Each data point in figure 4a represents an average over
many (∼150) repetitions.

To do adaptive tomography, we measured N0 = N/2
photons, used the data to generate an ML estimate ρ̂0,
then rotated the measurement bases so that one diago-
nalized ρ̂0. So, if the preliminary estimate is

ρ̂0 = λ1|ψ1〉〈ψ1|+ λ2|ψ2〉〈ψ2|,

we define |ψ3/4〉 = (1/2)(|ψ1〉 ± |ψ2〉) and |ψ5/6〉 =
(1/2)(|ψ1〉 ± i|ψ2〉), and then measure the bases
{{|ψ1〉, |ψ2〉}, {|ψ3〉, |ψ4〉}, {|ψ5〉, |ψ6〉}}. We measured
the remaining N − N0 photons in these new bases and
constructed a final ML estimate using the data from both
phases.

We fit a power law (1 − F = βNp) to the average
infidelity of each protocol (Fig. 4a), and found p =
−0.51± 0.02 for standard tomography, p = −0.71± 0.04
for the procedure of Ref. [18], and p = −0.90 ± 0.04 for
our adaptive procedure.

Our data generally match the theory; adaptive tomog-
raphy outperforms standard tomography by an order of
magnitude even for modest (∼ 104) N . Experiments that
achieve very low infidelities (∼ 10−4) show small but sta-
tistically significant deviations from theory, which we be-
lieve can be explained by waveplate misalignment – fluc-
tuations on the order of 10−3 radians are sufficient to
reproduce the observed deviations in simulations. For a
detailed discussion of systematic error and how it affects
our results please see the supplementary material.

There is an even simpler adaptive procedure. After
obtaining a preliminary estimate ρ̂0, we measured all of
the remaining N/2 samples in the diagonal basis of ρ̂0,
neglecting the second and third bases presented in the
previous section’s protocol. This reduced adaptive to-
mography procedure requires just one extra measurement
setting (full adaptive tomography requires three), but
achieves the same O( 1

N ) infidelity (Fig. 4b). The best fits
to the exponent p in 1−F = βNp are p = −0.51±0.02 for
standard tomography and p = −0.88 ± 0.05 for reduced
adaptive tomography (not significantly different from the

FIG. 4. Experimental data: a) The average infidelity 1 −
F (ρ̂, ρ) for the three tomographic protocols shown in Fig. 2
vs. the number of samples N . Each average is over 150 dif-
ferent realizations of the experiment. b) Average infidelity
1−F (ρ̂, ρ) for standard tomography (black) and reduced adap-
tive tomography (blue) is plotted versus N . Each average is
over 200 different realizations of the experiment; error bars
are standard deviation of the mean of these samples. Error
bars are standard deviation of the mean of these samples.

results shown in Fig. 4a). In higher dimensional sys-
tems, reduced adaptive tomography should provide even
greater efficiency advantages.

DISCUSSION

We demonstrated two easily implemented adaptive to-
mography procedures that achieve 1−F (ρ̂, ρ) = O(1/N)
for every qubit state. In contrast, any static tomography
protocol will yield infidelity O(1/

√
N) for most nearly-

pure states. Our simplest procedure requires only one
additional measurement setting than standard tomogra-
phy. We see almost no reason not to use reduced adaptive
tomography in future experiments.

Previous work [18] optimized average fidelity over Bu-
res measure, a very respectable choice [30–32]. Unfortu-
nately, the “hard-to-estimate” states lie in a thin shell
at the surface of the Bloch sphere, whose Bures mea-
sure vanishes as N → ∞. So although the scheme with
N0 ∝ N2/3 proposed in [18] achieves Bures-average infi-
delity O(1/N), it achieves only O(1/N5/6) infidelity for
nearly all of the (important) nearly-pure states [33]

The O(1/N) infidelity scaling achieved by our scheme
is optimal, but the constant can surely be improved –
i.e., if our scheme has asymptotic error α/N , a more so-
phisticated scheme can achieve α′/N with α′ < α. The
absolutely optimal protocol requires joint measurements
on all N samples [34], and will outperform any local mea-
surement. There is undoubtedly some marginal benefit
to adapting more than once, but we have shown that a
single adaptation is sufficient to achieve O(1/N) scaling.
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SUPPLEMENTARY MATERIAL

In our paper, we attribute certain properties of our
experimental data to “systematic errors”. The purpose
of this Supplement is to provide more detail on the role
that systematic errors play in our experimental results,
and their interplay with static and adaptive tomography.
“Systematic errors” is a broad term, incorporating al-
most everything that can go wrong with an experiment,
so we consider several forms of it. We begin by briefly dis-
cussing frame misalignment, where adaptive tomography
yields no advantage, but almost nothing else can either.
We then consider some systematic errors in measure-
ment that can be detected and mitigated, and demon-
strate through simulations that they affect static tomog-
raphy and adaptive tomography differently. Using a one-
parameter fit and a model of our experiment, we show
that waveplate-alignment errors of around 1.5 × 10−3

radians reproduce our experimental results remarkably
well. To wrap up, we examine the asymptotic scaling of
tomographic infidelity for three different models of sys-
tematic error, and conclude that adaptive tomography
mitigates these forms of systematic error much better
than static tomography can.

Frame Misalignment: The most systematic of er-
rors is a fixed misalignment of reference frames. In our
linear optics experiment, where a set of waveplates and
a polarizing beamsplitter are used to measure the po-
larization state of light, this means that all the optical
elements are misaligned by the same amount. Varying
tomographic strategies can have no effect on this sort of
error. In fact, this kind of frame misalignment cannot
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be detected at all within the experiment. It is equivalent
to a change of gauge, has no operational consequences in
this context, and is not interesting.

Instead, let us consider some errors that, while less
“systematic” than frame misalignment, are also more de-
tectable – and therefore potentially sensitive to different
tomographic strategies.

FIG. 5. Average infidelity vs. sample size (N) for simulations
with systematic errors (of Model 1 type; see text) on the order
of E = 10−2. The infidelity decreases with increasing N up
to a point, after which it flattens out after hitting a ’noise
floor’. The noise floor occurs at a lower average infidelity for
adaptive tomography than for static tomography.

Waveplate Misalignment: A very important source
of errors for our experiment is the alignment angle of the
waveplates that measure photon polarization states. Our
experiment’s reference frame is defined by the polarizing
beam-splitter used to make the final projective measure-
ment. To change the basis of the measurement, wave-
plates are mechanically rotated by a motor with good but
finite accuracy. Every time we change the measurement
basis, the motor’s finite accuracy causes a slight misalign-
ment of the waveplates – and the ensuing photodetections
correspond to a measurement of a basis slightly different
from the one we intended to measure.

Our terminology for discussing these errors is as fol-
lows. We performed (and, in this Supplement, we sim-
ulate) a large number of experiments. A single exper-
iment (or experimental run) comprises the production
of N identically prepared photons. Within an experi-
ment, we implement several (3 to 6) measurement set-
tings. Each measurement setting corresponds to (i) ad-
justing the waveplate, then (ii) measuring a large number
of photons without any adjustments. In static tomog-
raphy a single experiment includes three measurement
settings (projections onto X,Y, and Z axes of the Bloch
sphere), in each of which N/3 samples are measured. In
adaptive tomography, a single experiment includes six

measurement settings (the same initial set of three, and
then three more in a rotated frame), each applied to N/6
states.

We consider three different models of systematic error
in waveplate alignment.

1. Model 1. Each time a waveplate (whose purpose is
to make a measurement) is moved to a new angle θ,
it ends up instead aligned at angle θ+ δθ, where δθ
is a Gaussian random variable with zero mean and
standard deviation E. Thus, in each experimental
run, each measurement setting is misaligned by an
independent random angle. This angle persists over
many samples in the same experimental run, but
not across multiple experimental runs.

2. Model 2. Each time a waveplate is moved, it
misses its target θ by a random angle δθ that is fixed
for each experiment, rather than for each measure-
ment setting within the experiment. This model is
mathematically equivalent to (and can be taken to
represent) a small misalignment of the polarizing
beam splitter. We take δθ, which is fixed for each
individual experiment, to be a Gaussian random
variable with zero mean and standard deviation E.

3. Model 3. The waveplates are misaligned by an
angle δθ that is fixed for each experiment (as in
Model 2), but each experiment has the same fixed
misalignment. In this model, δθ = E is not a ran-
dom variable.

We believe that Model 1 best represents our experiment.
The waveplate motors used in our experiment have an fi-
nite precision, and every time we change their angle, they
return to a factory-set “home” position before realigning
(which eliminates or at least minimizes correlation be-
tween successive alignment errors). Thus, the waveplate
angle picks up a different random error each time it is
moved to a new measurement setting.

We simulated the effect of Models 1-3 on adaptive and
static tomography. In each simulation, 200 independent
experimental runs were generated (each involving at least
3 measurement settings, with many identically prepared
photons measured at each setting). We averaged the to-
mographic infidelity of these 200 runs to characterize the
effect of random waveplate errors in each model.
Results: Figure 5 shows error (average infidelity) ver-

sus sample size (N) for Model 1 with E = 0.5 degrees
(∼ 10−2 radians). As the sample size increases, statis-
tical errors decrease, and so average infidelity decreases.
However, the error reaches a clear noise floor as system-
atic errors begin to dominate. It is higher for standard
tomography than for adaptive tomography. We conclude
that adaptive tomography is less sensitive than standard
tomography to systematic errors.

Since the alignment errors vary randomly from exper-
iment to experiment, an astute experimentalist might
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FIG. 6. Average infidelity vs. sample size (N) for simulations
of adaptive tomography with systematic errors (of Model 1
type; see text) on the order of E = 10−3. Also plotted is
the region over which experimental data was taken (see main
body of text) and a line of best fit for this region.

achieve higher accuracy by repeating each measurement
setting many (M) times, resetting the waveplate each
time. This would work, reducing the infidelity by a fac-
tor of 1/

√
M , but it adds significantly to the experi-

mental difficulty and complexity. For example, if the
waveplates have a precision of ∼ 0.5 degrees, then when
these systematic errors dominate over statistical errors
(see Figure 5), the infidelity of static tomography satu-
rates at 10−2, while for adaptive tomography it saturates
at 10−3. Achieving the same 10−3 accuracy with static
tomography would require repeating each measurement
M = 100 times. Or, the experimentalist could just use
adaptive tomography, and achieve it with only a single
extra waveplate setting.

We then performed several simulations of Model 1, in
which we varied E (the magnitude of systematic error).
For each value of E, we fit a line to the 1 − F vs. N
curve over the same range of N that we observed in our
experiment. This is shown in Figure 2. A simulation
with E = 0.15 degrees yielded results almost indistin-
guishable from our experimental data. In the experi-
mentally observed region, the line of best fit has a slope
of −0.895± 0.023,

1− F ∝ N−0.895±0.023,

which matches our experimental data very well.
Finally, we investigated the value of the noise floor for

Models 1-3 (Figure 7). Each plot in Figure 7 shows 1−F
(average infidelity) vs. E (magnitude of systematic er-
rors) on a log-log plot, for both standard and adaptive
tomography. We examined sufficiently high N to guar-
antee that systematic errors dominate.

1. For Model 1, the line of best fit (on a log-log plot)
for standard tomography has a slope of 1.03± 0.01

FIG. 7. Location of the noise floor (1− F ) for Models
1,2,3 (from top to bottom). For each of the three Models,
we plot the average infidelity as N →∞ (to ensure that sys-
tematic errors dominate) vs. E (the magnitude of systematic
error). Data points are results of simulation, and lines are
lines of best fit.

and the line of best fit for adaptive tomography has
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a slope of 2.00± 0.01.

2. For Model 2, the slopes of the lines of best fit are
1.01± 0.02 and 1.91± 0.02.

3. For Model #3, the slopes of the lines of best fit are
1.18± 0.01 and 1.99± 0.01.

We conclude that in all three models of systematica er-
ror that we considered here, it’s fair to say that average
infidelity scales linearly with E for standard tomogra-
phy, and quadratically with E for adaptive tomography.
Adaptive tomography is substantially more robust to sys-
tematic errors than standard tomography – not just by
a constant factor, but qualitatively so.

Conclusion: We have shown that for three reason-
able models of systematic errors, the average infidelity of
adaptive tomography scales with E2 and the average infi-

delity of static tomography scales with E, where E is the
magnitude of these errors. Infidelity is very sensitive to
spectral errors (i.e., changes in the eigenvalues of the esti-
mated density matrix), but not to unitary errors (changes
in the eigenvectors). The primary result of systematic er-
rors in the measurement basis – i.e., measuring the wrong
basis by an angle E – is a unitary error in the estimate by
O(E). As we have shown in the main text, adaptive to-
mography measures the eigenvalues of the density matrix
to much higher precision than static tomography. Fur-
thermore, adaptive tomography (because it specifically
seeks to measure the diagonal basis of ρ) still obtains an
accurate estimate for the eigenvalues even in the pres-
ence of systematic error. Even if we get the basis wrong
by an angle of O(E), this only affects the measurement
probabilities (and therefore the estimated spectrum) by
O(E2).
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