2,825 research outputs found

    Ultrastructural Changes of the Vestibular Sensory Organs After Streptomycin Application on the Lateral Canal

    Get PDF
    Early changes in the vestibular sense organs resulting from the application of a streptomycin sulfate soaked Gelfoam® pledget on the fenestra of the lateral semicircular canal were studied by transmission and scanning electron microscopy. Three days after the application, lesions were present in the central part of the lateral crista. The type I sensory cells were more affected than the type JI cells. These sensory cells showed mitochondrial swelling, cytoplasm protrusion at the cell apex, inclusion of multiple vacuoles, fusion or loss of stereocilia, and pyknotic nuclei. Seven days after the drug application, the sensory cell damage extended to all three cristae and macula utriculi. The lesions were very extensive after ten days and the sensory cells had almost equally disappeared in all three cristae; the lesion in the macula utriculi was smaller and the macula sacculi was unaffected. At fourteen days, the lesions appeared less severe. Thus, a single application of a small amount of streptomycin on the lateral canal fenestra affected all vestibular sense organs, except the saccule, in a short time. The strong affinity of aminoglycosides for the cristae suggests possible entrapment of the drug at the ampullae. This local drug application technique to the canal will be useful in studying vestibular function in animals, and it is applicable to controlling severe vestibular symptoms in human patients

    Hydrogen partitioning and transport in titanium aluminides

    Get PDF
    This report gives the final summary of the research work perfomed from March 1, 1990 to August 28, 1993. Brief descriptions of the research findings are given on the surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions; titanium aluminides: surface composition effects as a function of temperature; Auger electron intensity variation in oxygen-charged silver; and segregation of sulfur on a titanium surface studied by Auger electron spectroscopy. Each description details one or more of the attached corresponding figures. Published journal documents are provided as appendices to give further detail

    Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach

    Get PDF
    Zigzag graphene nanoribbon (zGNR) of narrow width has a moderate energy gap in its antiferromagnetic ground state. So far, first-principles electron transport calculations have been performed using nonequilibrium Green function (NEGF) method combined with density functional theory (DFT). However, the commonly practiced bottom-gate control has not been studied computationally due to the need to simulate an electron reservoir that fixes the chemical potential of electrons in the zGNR and electrodes. Here, we present the isochemical potential scheme to describe the top/back-gate effect using external potential. Then, we examine the change in electronic state under the modulation of chemical potential and the subsequent electron transport phenomena in zGNR transistor under substantial top-/back-gate and bias voltages. The gate potential can activate the device states resulting in a boosted current. This gate-controlled current-boosting could be utilized for designing novel zGNR field effect transistors (FETs).ope

    Comparative study of INPIStron and spark gap

    Get PDF
    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron

    Metrological power of incompatible measurements

    Full text link
    We show that measurement incompatibility is a necessary resource to enhance the precision of quantum metrology. To utilize incompatible measurements, we propose a probabilistic method of operational quasiprobability (OQ) consisting of the measuring averages. OQ becomes positive semidefinite for some quantum states. We prove that Fisher information (FI), based on positive OQ, can be larger than the conventional quantum FI. Applying the proof, we show that FI of OQ can be extremely larger than quantum FI, when estimating a parameter encoded onto a qubit state with two mutually unbiased measurements. By adopting maximum likelihood estimator and linear error propagation methods, we illustrate that they achieve the high precision that our model predicts. This approach is expected to be applicable to improve quantum sensors

    Contextual quantum metrology

    Full text link
    Quantum metrology promises higher precision measurements than classical methods. Entanglement has been identified as one of quantum resources to enhance metrological precision. However, generating entangled states with high fidelity presents considerable challenges, and thus attaining metrological enhancement through entanglement is generally difficult. Here, we show that contextuality of measurement selection can enhance metrological precision, and this enhancement is attainable with a simple linear optical experiment. We call our methodology "contextual quantum metrology" (coQM). Contextuality is a nonclassical property known as a resource for various quantum information processing tasks. Until now, it has remained an open question whether contextuality can be a resource for quantum metrology. We answer this question in the affirmative by showing that the coQM can elevate precision of an optical polarimetry by a factor of 1.4 to 6.0, much higher than the one by quantum Fisher information, known as the limit of conventional quantum metrology. We achieve the contextuality-enabled enhancement with two polarization measurements which are mutually complementary, whereas, in the conventional method, some optimal measurements to achieve the precision limit are either theoretically difficult to find or experimentally infeasible. These results highlight that the contextuality of measurement selection is applicable in practice for quantum metrology.Comment: 18 pages, 6 figures, companion paper: arXiv:2311.1178

    Drift-induced modifications to the dynamical polarization of graphene

    Get PDF
    The response function of graphene is calculated in the presence of a constant current across the sample. For small drift velocities and finite chemical potential, analytic expressions are obtained and consequences on the plasmonic excitations are discussed. For general drift velocities and zero chemical potential, numerical results are presented and a plasmon gain region is identified that is related to interband transitions. © 2015 American Physical Societyopen0
    corecore