Metrological power of incompatible measurements

Abstract

We show that measurement incompatibility is a necessary resource to enhance the precision of quantum metrology. To utilize incompatible measurements, we propose a probabilistic method of operational quasiprobability (OQ) consisting of the measuring averages. OQ becomes positive semidefinite for some quantum states. We prove that Fisher information (FI), based on positive OQ, can be larger than the conventional quantum FI. Applying the proof, we show that FI of OQ can be extremely larger than quantum FI, when estimating a parameter encoded onto a qubit state with two mutually unbiased measurements. By adopting maximum likelihood estimator and linear error propagation methods, we illustrate that they achieve the high precision that our model predicts. This approach is expected to be applicable to improve quantum sensors

    Similar works

    Full text

    thumbnail-image

    Available Versions