107 research outputs found

    Seven ways a warming climate can kill the southern boreal forest

    Get PDF
    The southern boreal forests of North America are susceptible to large changes in composition as temperate forests or grasslands may replace them as the climate warms. A number of mechanisms for this have been shown to occur in recent years: (1) Gradual replacement of boreal trees by temperate trees through gap dynamics; (2) Sudden replacement of boreal overstory trees after gradual understory invasion by temperate tree species; (3) Trophic cascades causing delayed invasion by temperate species, followed by moderately sudden change from boreal to temperate forest; (4) Wind and/or hail storms removing large swaths of boreal forest and suddenly releasing temperate understory trees; (4) Compound disturbances: wind and fire combination; (5) Long, warm summers and increased drought stress; (6) Insect infestation due to lack of extreme winter cold; (7) Phenological disturbance, due to early springs, that has the potential to kill enormous swaths of coniferous boreal forest within a few years. Although most models project gradual change from boreal forest to temperate forest or savanna, most of these mechanisms have the capability to transform large swaths (size range tens to millions of square kilometers) of boreal forest to other vegetation types during the 21st century. Therefore, many surprises are likely to occur in the southern boreal forest over the next century, with major impacts on forest productivity, ecosystem services, and wildlife habitat

    Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America?

    Get PDF
    Within the next 50–100 years, the warming climate will have major effects on boreal and northern hardwood forests situated near the prairie–forest border of central North America. This biome boundary shifted to the northeast during past episodes of global warming, and is expected to do so again. The climate of the future will likely lead to higher mortality among mature trees, because of the greater frequency of droughts, fires, forest-leveling windstorms, and outbreaks of native and exotic insect pests and diseases. In addition, increasing populations of native deer and European earthworm invasions will inhibit the establishment of tree seedlings. The expected net impact of these factors will be a “savannification” of the forest, owing to the loss of adult trees at a rate faster than that at which they can be replaced. This will cause a greater magnitude and more rapid northeastward shift of the prairie–forest border, as compared with a shift solely attributable to the direct effects of temperature change

    Wind and Fire: Rapid Shifts in Tree Community Composition Following Multiple Disturbances in the Southern Boreal Forest

    Get PDF
    Under a warming climate, the southern boreal forest of North America is expected to see a doubling in fire frequency and potential for increased wind disturbance over the next century. Although boreal forests are often considered fire-adapted, projected increases in disturbance frequency will likely result in novel combinations of disturbances with severities and impacts on community composition outside historic norms. Using a network of repeatedly measured vegetation monitoring plots, we followed changes in tree community composition in areas of the Boundary Waters Canoe Area Wilderness (BWCAW), in Minnesota, USA, experiencing disturbances ranging from severe windstorms or wildfires to areas affected by wind followed by fire or multiple fires within a short period of time. Using nonmetric multidimensional scaling ordination, hierarchical cluster analysis, and permutational analysis of variance, we compared successional pathways across different disturbance types and combinations to test whether multiple disturbances had altered successional pathways or caused greater convergence relative to single disturbances. We found that multiple disturbances often resulted in strong shifts toward wind-dispersed early-successional tree species, while single disturbances tended to have multiple successional pathways that favored both late- and early-successional species. All disturbances in our study resulted in significant shifts in composition, but we generally failed to find statistical evidence of changes in community dispersion. Although boreal forests appear to be somewhat resilient to multiple disturbance events, multiple disturbances resulted in post-disturbance tree communities that were heavily dominated by disturbance-adapted deciduous trees at the expense of conifers. Our results demonstrate that multiple disturbances are capable of altering successional pathways relative to single disturbance events and that increasingly frequent disturbances are likely to alter boreal forest structure and composition, perhaps leading to a forest region strikingly unlike that of today

    Temperature and leaf nitrogen affect performance of plant species at range overlap

    Get PDF
    Plant growth and survival near range limits are likely sensitive to small changes in environmental conditions. Warming temperatures are causing range shifts and thus changes in species composition within range-edge ecotones; however, it is often not clear how temperature alters performance. Through an observational field study, we assessed temperature and nitrogen effects on survival and growth of co-occurring temperate (Acer saccharum) and boreal (Abies balsamea) saplings across their overlapping range limits in the Great Lakes region, USA. Across sampled ranges of soil texture, soil pH, and precipitation, it appears that temperature affects leaf nitrogen for A. saccharum near its northern range limit (R2=0.64), whereas there was no significant leaf N ~ temperature relationship for A. balsamea. Higher A. saccharum leaf N at warm sites was associated with increased survival and growth. Abies balsamea survival and growth were best modeled with summer temperature (negative relationship); performance at warm sites depended upon light availability, suggesting the shade-tolerance of this species near its southern range limits may be mediated by temperature. The ranges of these two tree species overlap across millions of hectares, and temperature and temperature-mediated nitrogen likely play important roles in their relative performance

    Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity

    Get PDF
    Understanding the relationship between species diversity and productivity is central to linking compositional and functional aspects of terrestrial ecosystems, and little is known about such issues in boreal forests. We used structural equation modelling (SEM) to test several hypotheses about direct and indirect influences of productivity, its correlate basal area, and resources on understorey vascular plant diversity on 2025 plots in 81 southern boreal forests in Minnesota, USA. We first examined the hypothesis that increasing basal area reduces plot-scale species richness due to competitive exclusion from the most limiting resource, light. As expected, light pre-emption increased with total basal area, which directly reduced understorey species richness. However, complex relations between basal area, dominant understorey species, and resource supply to the understorey can also influence understorey communities. Hence, we addressed whether plots with low light availability in the understorey were associated with low abundance of dominant understorey species and alleviation of competitive exclusion of other understorey species. SEM results showed that low light decreased total understorey cover, alleviating resource competition from this stratum and thus increasing understorey species richness. Furthermore, the cover of four dominant understorey species was positively correlated with light availability and negatively correlated with plot-scale species richness. Aggregating data for the 25 plots at each stand, SEM showed that stand-scale species richness was positively influenced by light heterogeneity, which in turn increased with annual above-ground productivity. Species richness was positively influenced by litter %N, considered an index of nitrogen availability at the plot and stand scale. Synthesis. These results suggest that understorey species richness in boreal forests is regulated by productivity, but is primarily mediated by the indirect effects of productivity of the dominant producers on resource availability and heterogeneity. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society

    The wave towards a new steady state: effects of earthworm invasion on soil microbial functions

    Get PDF
    Abstract Earthworms are ecosystem engineers that cause a long cascade of ecological effects when they invade previously earthworm-free forests. However, the consequences of earthworm invasion for soil microbial functions are poorly understood. Here, we used two well-studied invasion fronts of European earthworms in northern North American hardwood forests previously devoid of earthworms in order to investigate three stages of earthworm invasion: uninvaded, the front of the leading edge of earthworm invasion and locations invaded at least 10 years previously. Soil microbial biomass, respiration and metabolic quotient were measured. Earthworms had marked effects on soil microbial biomass (-42%) and respiration (-32%). At both sites, impacts were most pronounced at the leading edge of the invasion front, significantly decreasing soil microbial C use efficiency. This was most likely due to the disturbance of the soil microbial community caused by water stress. Based on these results, we hypothesize that effects of earthworm invasion on native soil ecosystem functioning are most pronounced at the peak of the invasion wave. After experiencing this wave, ecosystems possibly enter a new steady state with altered biotic compositions and functions

    Pathways in old-field succession to white pine: Seed rain, shade, and climate effects

    Get PDF
    Trees slowly colonize old fields on sandy outwash in the prairie–forest ecotone of the north-central United States, and in the absence of fire, succession is expected to proceed toward oak woodland. We analyzed whether a case of unusually rapid and spatially extensive invasion by white pine (Pinus strobus) could be explained by the presence of specific temporal or spatial opportunity windows suitable for such invasion. We tested whether the invasion was temporally restricted to the period immediately after abandonment or to periods of favorable climate, and whether it was spatially restricted to areas of high seed rain or high forest-edge shade. White pine invasion into the field occurred in two waves separated from each other by a 1987–1989 drought period. The first wave (1980– 1985) occurred during a period of average climate and led to the establishment of dense sapling patches in shade near forest edges. The second wave (1991–1994) occurred during a period of high precipitation and cooler than normal temperature, and resulted in colonization of the unshaded field center. In addition to the two temporal windows, white pine invasion occurred within two spatial windows: in areas highly sheltered by forest edge and in areas receiving high white pine seed rain. Overall these windows produced three different successional pathways: (1) a slow, creeping white pine invasion into highly shaded areas with low seed rain near forest edges; (2) a rapid, discrete-step invasion in areas where seed rain was abundant enough to overcome mortality in lower shade and where early arrivals facilitate filling in by later arrivals; and (3) a deferred invasion in the field center where low seed rain and lack of shade allowed the persistence of a grassland stage until favorable climate resulted in a white pine recruitment pulse. Temporal variation in climate can accelerate or decelerate any of the three successional pathways

    Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests

    Get PDF
    Abstract. The invasion of exotic earthworms into northern temperate and boreal forests previously devoid of earthworms is an important driver of ecosystem change. Earthworm invasion can cause significant changes in soil structure and communities, nutrient cycles, and the diversity and abundance of herbaceous plants. However, the regional extent and patterns of this invasion are poorly known. We conducted a regional survey in the Chippewa and Chequamegon National Forests, in Minnesota and Wisconsin, USA, respectively, to measure the extent and patterns of earthworm invasion and their relationship to potential earthworm introduction sites. We sampled earthworms, soils, and vegetation in 20 mature, sugar mapledominated forest stands in each national forest and analyzed the relationship between the presence of five earthworm taxonomic groups, habitat variables, and distance to the nearest potential introduction site. Earthworm invasion was extensive but incomplete in the two national forests. Four of the six earthworm taxonomic groups occurred in 55-95% of transects; however 20% of all transects were invaded by only one taxonomic group that has relatively minor ecological effects. Earthworm taxonomic groups exhibited a similar sequence of invasion found in other studies: Dendrobaena . Aporrectodea ¼ Lumbricus juveniles . L. rubellus . L. terrestris. Distance to the nearest road was the best predictor of earthworm invasion in Wisconsin while distance to the nearest cabin was the best predictor in Minnesota. These data allow us to make preliminary assessments of landscape patterns of earthworm invasion. As an example, we estimate that 82% of upland mesic hardwood stands in the Wisconsin region are likely invaded by most taxonomic groups while only 3% are unlikely to be invaded at present. Distance to roads and cabins provides a coarse-scale predictor of earthworm invasion to focus stand-level assessments that will help forest managers better understand current and potential forest conditions and identify uninvaded areas that could serve as important refugia for plant species threatened by earthworm invasion

    Natural Disturbance-Based Forest Management: Moving Beyond Retention and Continuous-Cover Forestry

    Get PDF
    Global forest area is declining rapidly, along with degradation of the ecological condition of remaining forests. Hence it is necessary to adopt forest management approaches that can achieve a balance between (1) human management designs based on homogenization of forest structure to efficiently deliver economic values and (2) naturally emerging self-organized ecosystem dynamics that foster heterogeneity, biodiversity, resilience and adaptive capacity. Natural disturbance-based management is suggested to provide such an approach. It is grounded on the premise that disturbance is a key process maintaining diversity of ecosystem structures, species and functions, and adaptive and evolutionary potential, which functionally link to sustainability of ecosystem services supporting human well-being. We review the development, ecological and evolutionary foundations and applications of natural disturbance-based forest management. With emphasis on boreal forests, we compare this approach with two mainstream approaches to sustainable forest management, retention and continuous-cover forestry. Compared with these approaches, natural disturbance-based management provides a more comprehensive framework, which is compatible with current understanding of multiple-scale ecological processes and structures, which underlie biodiversity, resilience and adaptive potential of forest ecosystems. We conclude that natural disturbance-based management provides a comprehensive ecosystem-based framework for managing forests for human needs of commodity production and immaterial values, while maintaining forest health in the rapidly changing global environment.Peer reviewe

    The wave towards a new steady state: effects of earthworm invasion on soil microbial functions

    Get PDF
    Earthworms are ecosystem engineers that cause a long cascade of ecological effects when they invade previously earthworm-free forests. However, the consequences of earthworm invasion for soil microbial functions are poorly understood. Here, we used two well-studied invasion fronts of European earthworms in northern North American hardwood forests previously devoid of earthworms in order to investigate three stages of earthworm invasion: uninvaded, the front of the leading edge of earthworm invasion and locations invaded at least 10 years previously. Soil microbial biomass, respiration and metabolic quotient were measured. Earthworms had marked effects on soil microbial biomass (−42%) and respiration (−32%). At both sites, impacts were most pronounced at the leading edge of the invasion front, significantly decreasing soil microbial C use efficiency. This was most likely due to the disturbance of the soil microbial community caused by water stress. Based on these results, we hypothesize that effects of earthworm invasion on native soil ecosystem functioning are most pronounced at the peak of the invasion wave. After experiencing this wave, ecosystems possibly enter a new steady state with altered biotic compositions and functions
    corecore