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Summary

1. Understanding the relationship between species diversity and productivity is central to linking

compositional and functional aspects of terrestrial ecosystems, and little is known about such issues

in boreal forests. We used structural equation modelling (SEM) to test several hypotheses about

direct and indirect influences of productivity, its correlate basal area, and resources on understorey

vascular plant diversity on 2025 plots in 81 southern boreal forests inMinnesota, USA.

2. We first examined the hypothesis that increasing basal area reduces plot-scale species richness

due to competitive exclusion from the most limiting resource, light. As expected, light pre-emption

increased with total basal area, which directly reduced understorey species richness. However, com-

plex relations between basal area, dominant understorey species, and resource supply to the under-

storey can also influence understorey communities. Hence, we addressed whether plots with low

light availability in the understorey were associated with low abundance of dominant understorey

species and alleviation of competitive exclusion of other understorey species. SEM results showed

that low light decreased total understorey cover, alleviating resource competition from this stratum

and thus increasing understorey species richness. Furthermore, the cover of four dominant under-

storey species was positively correlated with light availability and negatively correlated with plot-

scale species richness.

3. Aggregating data for the 25 plots at each stand, SEM showed that stand-scale species richness

was positively influenced by light heterogeneity, which in turn increased with annual above-ground

productivity.

4. Species richness was positively influenced by litter %N, considered an index of nitrogen avail-

ability at the plot and stand scale.

5. Synthesis. These results suggest that understorey species richness in boreal forests is regulated by

productivity, but is primarily mediated by the indirect effects of productivity of the dominant pro-

ducers on resource availability and heterogeneity.

Key-words: above-ground net primary productivity, Picea mariana, Pinus banksiana, plant–

plant interactions, Populus tremuloides, southern boreal forest, species richness

Introduction

Characterizing and understanding patterns of species diversity

remains an important goal in ecological science. There is an

enormous theoretical and empirical literature regarding the fac-

tors regulating diversity at varying hierarchical and spatial

scales. One important feature of the literature involves the rela-

tionship between plant productivity and species richness.

Although consensus remains elusive, it seems likely that

patterns vary with both hierarchical and spatial scale, with dif-

ferentmechanismsexplainingpatternsatdifferent scales (Chase

& Leibold 2002; Rajaniemi 2003; Oberle, Grace &Chase 2009;

Chase 2010). Gillman&Wright (2006) concluded that at conti-

nental to global scales, species richness appears to be generally

positively related to above-ground net primary productivity

(ANPP), consistent with the species-energy hypothesis,
*Correspondence author. E-mail: preich@umn.edu
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althoughprevious studieswere less uniform in this view (Mittel-

bach et al. 2001;Waide et al. 1999) and different growth forms

may differ in their responses (Oberle, Grace & Chase 2009). In

contrast, a seemingly bewildering array of species richness–

ANPP interaction patterns have been reported at local to land-

scapescales,which is thescaleof interest in this study.The litera-

ture includes reports that the species richness–ANPP

interaction has no pattern, a unimodal pattern, and a positive

relationship; but also in some casesU-shaped andnegative rela-

tionships (Waide et al. 1999; Gross et al. 2000; Gillman &

Wright 2006). Reasons for such variation in the species rich-

ness–ANPPinteractioncould involvedistinctways inwhichdif-

ferent drivers of species richness influence the drivers ofANPP,

and vice-versa, as well as influences of other drivers on both

diversity and productivity (Wardle et al. 1997; Gross et al.

2000;Rajaniemi2003;Reich2009; Jonsson&Wardle2010).

Despite this variety of observations, perhaps the most com-

monbelief (Rajaniemi2003) is that the species richness–produc-

tivity relationship is fundamentally unimodal at the local scale,

as observed patterns (except perhaps theU-shaped pattern) can

beexplainedbyarise-and-fallunimodalmodel,with the specific

pattern observed in any given study in part due to which seg-

ment of a complete productivity gradient, and how large a part,

was examined. There is some consensus (Newman 1973;Grime

1977; Huston 1979; Tilman & Pacala 1993; Rajaniemi 2003)

that at extremely low productivity, species richness is also typi-

cally low, and both increase together up to a point. There is less

consensus however, regarding the mechanisms at play, what

happens to species richness as productivity rises further, and

even less consensus regarding themechanisms involved.

To a degree, many species richness–ANPP hypotheses agree

(Rajaniemi 2003) that the increase phase of the unimodal spe-

cies richness–ANPP curve occurs because few species can toler-

ate extremely low resource availabilities, and as productivity

increases resource requirements are met for more and more

species. There is also a degree of consensus about the decrease

phase of the curve – that the effect of competition on diversity

is increasingly negativewith increasing productivity. The possi-

ble mechanisms are manifold (and plausibly complementary)

and include competition intensity, resource heterogeneity, and

population dynamics, among others.

The maintenance of plant diversity is an important conser-

vation priority in cold temperate and boreal forests. Studies

have attempted to characterize patterns of boreal plant species

composition and diversity in relation to productivity andmany

other hypothesized drivers, such as disturbance (Wardle et al.

1997; Rees & Juday 2002; Haeussler & Bergeron 2004;Kem-

bell, Wang & Dang 2005; Jonsson &Wardle 2010), time since

disturbance (Hart & Chen 2006, 2008), or meso- and macro-

scale environment (Legare et al. 2001; Chipman & Johnson

2002). Similarly as shown for ponds (Chase & Leibold 2003),

rough comparisons of boreal forest data bases suggest that at

the continental scale, the more productive, warmer southern

boreal forests have greater total vascular plant species richness

than less productive, colder northern boreal forests (Waide

et al. 1999). However, this coupling of diversity and produc-

tivity at large geographic scales likely reflects macro-scale

controls on both diversity and productivity, rather than the

patch-to-stand scale relationship between the two (Waide et al.

1999; Chase &Leibold 2003).

Unfortunately, according to Waide et al. (1999), for boreal

forests, ‘data bases adequate for comparison of diversity and

productivity at the local site and stand level do not exist’.

Although there has been a flurry of activity regarding boreal

forest diversity in the past decade or so (see citations above),

few include direct measurements of ANPP. In one of the stud-

ies most closely targeted at this question, Chen, Legare & Ber-

geron (2004) used site index as a surrogate for productivity of

aspen stands in British Columbia and reported that vascular

species richness increased with site index, perhaps due to

greater spatial and resource heterogeneity on more productive

sites. In an earlier study, greater stress and lower resource

availability on smaller islands may have alleviated abundance

of and competitive exclusion by a single dominant species,

allowing greater diversity (Wardle et al. 1997).

Herein, we use a data base that includes vascular plant rich-

ness, ANPP, basal area, and measures of stand structure and

resource availability to assess whether species richness is

related to productivity in southern boreal forests at a patch to

stand scale and whether those relations might instead be asso-

ciated with patterns of resource availability or heterogeneity

that might co-vary with productivity. Given that few prior for-

est species richness–productivity studies directlymeasured pro-

ductivity at the stand scale or measured resource availability or

stand structure at the patch scale, our current data base pre-

sents an opportunity to explore unresolved questions about

species richness–productivity relationships.

To assess hypotheses about the relations of resource supply,

productivity and forest diversity, we measured plant species

richness, ANPP, biomass, basal area, light and indices of nitro-

gen (N) status for 81 southern boreal forest stands. These

stands include Populus tremuloides (trembling aspen), Pinus

banksiana (jack pine), and Picea mariana (black spruce)-domi-

nated forests. All stands were mixtures of the dominant with

several other tree species.Given samplingprotocols, somemea-

sures, such as ANPP, can only be expressed at the stand scale,

but several other variablesweremeasured in 9, 10, 15 or 25 indi-

vidual plots (depending on measure and year of measurement)

at a fine scale (representing a patch or neighbourhood scale for

understorey plants) within each of those stands and thus, can

be expressed at both plot and stand scales. Such measures

included understorey community composition and richness,

overstorey basal area and its composition, light availability,

and litter %N concentration, allowing us to assess these rela-

tionships at both plot (e.g. c. 2 m2 scale) and aggregate stand

(25plotswithin a60 · 60 marea) scales, and touseplot-to-plot

heterogeneity in light availability as ametric of resource hetero-

geneity.Weuse structural equationmodelling (Shipley 2002) to

examine and synthesize the various hypothesized linkages.

Given the species richness–ANPP hypotheses noted previ-

ously, and what we know about patterns of species diversity in

boreal forests (Wardle et al. 1997; Hart & Chen 2006), how

should understorey species richness vary with ANPP and light

in boreal forests? We hypothesize that we will observe a nega-
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tive species richness–ANPP relationship and positive species

richness–light and positive species richness–resource heteroge-

neity relationships, as follows.

Given our hypothesis that light is the primary resource limi-

tation in these forests, increasing resource pre-emption by

overstorey trees that reduce light to understorey species will

reduce richness at the plot scale (Hart & Chen 2008; Fig. 1).

However, if decreasing light to the understorey reduces abun-

dance of an understorey species that itself can pre-empt

resources and competitively exclude other understorey species

(Hart & Chen 2006), this would increase understorey species

richness. In addition, we hypothesize that nitrogen is a second-

ary resource for these plants in these systems, and as a below-

ground resource increasing N supply should alleviate impacts

of decreasing light supply by making plants relatively more

shade tolerant (as shown inWalters & Reich 2000). Thus, spe-

cies richness should be positively related to our surrogate for N

availability (litter %N). In turn, we hypothesize that litter%N

should have positive influence on productivity and basal area,

and vice-versa. Finally, if patches within a stand are heteroge-

neous in light availability, this will lead to higher aggregate

stand scale species richness because of increasing plot–plot

beta diversity, as suggested byHart &Chen (2008).

Materials and methods

SITES

Northeastern Minnesota represents the southwestern ecotone of the

boreal forests of North America. We studied 25 plots on each of 81

stands, ranging in age from 19 to 133 years old and covering the

range of variation in the most important cover types typically seen

in southern boreal forests of central and eastern North America

(see Reich et al. 2001 for more details). Data included in this study

were collected between 1995 and 1997. The stands were classified

into three forest types, two age classes (25–40, 70–100 years), and

two modes of disturbance (crown fire, logging) leading to stand

turnover and initiation (Reich et al. 2001). We selected stands of

three cover types important in Minnesota and central Canada:

aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana

Lamb.), and black spruce (Picea mariana [Mill.] BSP.). The two

stand age classes were chosen because they were the only classes for

which it was possible to find sufficient numbers of stands estab-

lished after both logging and fire. As stand age and disturbance

type prior to current stand origin had little impact on vascular plant

species composition or diversity in this data set (Reich et al. 2001)

and were not significant in the analyses reported herein, these attri-

butes will be ignored henceforth in this study.

Although classified and selected based on the dominant canopy

tree species, each stand contained a mixture of tree species (see

Table 1 in Reich et al. 2001). The dominant species made up 70–85%

of the basal area on average. Aspen and jack pine stands were found

on mineral soils with generally similar textures, while spruce stands

were on organic soils (Reich et al. 2001).

METHODS

At each site, we located a 60 · 60 m core study area at least 50 m

from an opening, with 25 points in a 5 · 5 grid at 10-m spacing. Her-

Light avail BA

SRplot

Understorey

cover

Nlitter

+ or –+ or –

+

–

– +– +
+

–

+

–

(a)

ANPP overstorey LAI

Light meanLight SD

SRstand

N litter

+ or –

+
+ + or –

–

+ –

+

+

– +

(b)

Fig. 1. (a and b) Conceptual models of hypothesized relationships

between ANPP and understorey species diversity in southern boreal

forests at (a) patch (SRplot) and (b) stand (SRstand) scales. The dia-

grams are drawn to demonstrate relationships that might arise

across a gradient of rising ANPP if overstorey trees influence total

vascular plant richness via competitive exclusion. The figure should

be interpreted as a cascade of effects. The hypothesized cascade is

that high ANPP (or its surrogate high basal area, BA) is associated

with high leaf area index (LAI) that results in high canopy light

interception and low understorey light availability (and low patchi-

ness of understorey light availability at the stand scale). These lead

to low species richness. Low understorey light availability also leads

to low abundance of understorey dominants that exert their own

competitive exclusion of other understorey species when they are

highly abundant; thus, rising ANPP increases species richness by

muting the abundance of the understorey dominants. Litter nitrogen

concentration (Nlitter; an index of soil nitrogen supply) is positively

related to ANPP, BA, LAI, and also directly positively related to

understorey diversity. Further explanation of these hypotheses is

provided in the text. Curved arrows represent correlations. Straight

arrows represent direct relationships. Lightmean = mean light

availability across plots. LightSD = standard deviation of

light availability among plots. Light avail. = within-plot light avail-

ability. ANPPoverstorey = ANPP of the overstorey at the stand scale.
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baceous, shrub and woody seedling vegetation surveys (presence and

percent cover) were made in midsummer at all 25 points using 0.75-

m-radius circular plots. Cover was visually estimated for all species

lower than 1 m in height as the vertically projected area, using a six-

class system (1%, 1–5%, 6–25%, 26–50%, 51–75% and 76–100%).

Abundance was defined by cover, using midpoints of cover classes.

Stem counts were made for shrubs (all heights) within a 1-m radius of

plot centre. Stems were counted individually up to five and then

placed into classes of 6–10, 11–20, 21–50, or >50. Tree inventories

(species and dbh of all trees >5 cm dbh) were made on 4.5-m radius

plots centred at all 25 points within every stand.

Annual ANPP and litterfall N cycling of the woody plants were

assessed using standard methods (Reich et al. 2001). Litterfall was

collected repeatedly using 28 · 34 cm traps near ground level over a

full year period at 9–15 randomly selected plots in each stand, spa-

tially offset from the herbaceous survey plot centre point, oven-dried

and weighed, and analysed for N concentration (Kjeldahl method,

Research Analytical Laboratory, University of Minnesota). Annual

woody plant ANPP was assumed to be the sum of wood production

and woody plant litterfall production. Annual above-ground wood

production was estimated using radial growth in the most recent

10 year and estimates of stemwood biomass based on dbh (see Reich

et al. 2001 for details). Although litter traps capturemost fine litterfall

from tall shrubs, they do not capture litterfall from short herbaceous

vegetation and short shrubs. We also did not measure wood produc-

tion of shrubs. Thus, our values for ANPP slightly underestimate

total vascular plant ANPP.

The percentage canopy openness was used as an index of light

interception at both plot and stands scales and was measured using a

method that contrasts understorey with open photosynthetic photon

flux density (PPFD) under diffuse light conditions (Machado&Reich

1999); all measurements were made at dusk or dawn. Percentage

canopy openness measured using this method has been shown to cor-

respond well with median summed instantaneous PPFD in both

broad-leafed and needle-leafed forests (Machado & Reich 1999;

Tobin & Reich 2009). The standard deviation of light among plots in

each stand was used as a measure of heterogeneity. Leaf area index

(LAI) was estimated at the stand scale by taking litterfall mass, con-

verting it to litterfall area using measured specific leaf area (which

equal LAI for aspen stands), and multiplying by leaf life span for the

evergreen stands.

Using all data to examine bivariate relations, species richness at the

plot scale and at the aggregated stand scale were both negatively cor-

related with light availability and the abundance of spruce (basal area

of spruce), and positively correlated with litter%N, aspen basal area,

total stand basal area, and ANPP (data not shown). However, these

correlations in many cases mask more complex relations and interac-

tions. Hence, we used SEM as an integrated approach to data synthe-

sis (e.g. Oberle, Grace &Chase 2009; Jonsson&Wardle 2010).

PLOT-LEVEL MODELS AND ANALYSES

Total basal area and light availability are linearly correlated with

ANPP at the stand scale (P < 0.0001, r = 0.60 and 0.73, respec-

tively).We therefore used these variables as proxies for plot scale pro-

ductivity (ANPP and LAI were not measured at the plot scale).

Because total basal area accounts for woody biomass while light

availability accounts for leaf biomass, we allowed both of these vari-

ables to affect our index of N availability (Nlitter; Fig. 1a). Similarly,

because understorey cover is a measure of productivity that should

affect and be affected by N availability, we also included these path-

ways in the full model (Fig. 1a).

We fitted the full model (Fig. 1a), to the plot-level data and com-

pared it with versions that removed the pathways between light avail-

ability, basal area, understorey cover andNlitter (a total of 64 models).

We then took the best model from this set and compared it with mod-

els that incorporated forest composition data: black spruce, jack pine,

and ⁄ or aspen basal area into the model. These models incorporated

(i) no composition data, (ii) data for all three species, (iii) data for all

combinations of two species, and (iv) data for one of the species

(a total of eight models). Species basal area data were allowed to

affect light availability, Nlitter, understorey cover, and SRplot. Because

species’ basal area was not correlated with basal area of other species

but was correlatedwith the total basal area, all models included corre-

lations between each species’ basal area and total basal area (i.e. inter-

specific basal area correlations were not included). However, adding

species composition into the model added little further explanatory

power, so these results are not presented.

All models were assessed for goodness-of-fit, using Satorra-Bentler

scaled v2 tests. In this case,P > 0.05 indicates thatmodel fits produce

covariance matrices not significantly different from observed covari-

ancematrices (i.e. indicate of adequatemodel fit).Models with signifi-

cant fits were compared using Akaike’s Information Criterion (AIC).

AIC determines the model closest to the unknown truth, which is rep-

resented by the data (Burnham&Anderson2002).Themodelwith the

lowest AIC value has themost support in the data and is closest to the

unknown truth. To be chosen as the best model, the model had to be

statistically significant and be more than 3 AIC points away from the

next best model. If all significant models that were <3 AIC points

away from the best model were nested, then the results from the most

Table 1. Effects on patch-scale species richness (SR) of the seven understorey species with highest abundance (total cover) across all 2025 plots.

The SR effect is from amodel run for each species individually that includes light at 1-m height (above the vast majority of all understorey cover),

the total understorey cover, and the cover of the species in question, using only plots where the species was present.When the species is significant

in relation to SR, the direction of the relationship of its cover to SR is shown. The rank among all species of their relative abundance in cover for

those plots where each species was present is shown as well. NS, not significant.

Species Abundance rank Functional type SR effect (direction)

Rank in cover

when present Frequency rank

Corylus cornuta 1 Shrub ) 1 4

Eurybia macrophylla 2 Herb ) 9 2

Maianthemum canadense 3 Herb + 73 1

Cornus canadensis 4 Herb NS 52 3

Abies balsamea 5 Tree seedling ) 4 12

Diervilla lonicera 6 Shrub ) 29 5

Aralia nudaculis 7 Shrub NS 28 6
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inclusivemodel (modelwith themost pathways) are discussed. If these

modelswere not nested, the results fromallmodels are discussed.

All models were fit in R 2.12.0 using proc lavaan (Rosseel 2011).

We used maximum likelihood estimation with robust standard errors

and a Satorra-Bentler scaled v2 statistic (MLM estimation) to deter-

mine the significance of the models and each model’s path coeffi-

cients. Calculating AIC values usingMLM estimation is problematic

(Markon & Krueger 2004). We therefore used AIC values generated

using maximum likelihood estimation (ML) to compare models, with

the understanding that the results may be biased and model weights

inaccurate. Thus, the AIC results are largely qualitative rather than

quantitative.

STAND-LEVEL MODELS AND ANALYSIS

Examination of the data and the fit of SEMmodels revealed a strong

correlation between mean light availability and the standard devia-

tion (SD) of light availability, as well as the potential for significant

effects of ANPP on mean and SD light (in addition to the effects of

LAI on these variables; Fig. 1b). Models without these correlations

did not significantly fit the data.

We first compared the fit of the full model to (i) a model that omit-

ted the pathway between ANPP and stand-level species richness

(SRstand), (ii) a model that omitted the pathways between ANPP and

the two light variables (SD and mean light), (iii) a model that omitted

the pathways between ANPP and the two light variables and ANPP

and SRstand. Removing the pathway between ANPP and SRstand tests

whether or not the model accounts for the effects of ANPP by includ-

ing information about light andN availability.

As above, all models were fit in R2.12.0 using proc lavaan (MLM

estimation), assessed for goodness-of-fit using Satorra-Bentler scaled

v2 tests and compared using AIC (ML estimation). As with plot-scale

data, the stand-scale analyses were only modestly different if compo-

sitional data were included for the overstorey; hence, these results are

not presented.

Results

PLOT LEVEL

Across all plots and stands, only one model was significant

(Fig. 2). In this model, light availability and total basal area

were negatively correlated, understorey cover decreased

weakly with increasing light availability, Nlitter increased with

basal area, basal area declinedwith increasingNlitter, andNlitter

increased with increasing understorey cover (Fig. 2;

P = 0.7627). SRplot increased with Nlitter and understorey

cover (Fig. 2). Light availability and total basal area had very

weak effects on SRplot (Fig. 2). The model also included

several weak indirect effects on SRplot: light availability

decreased SRplot by decreasing understorey cover (indirect

path coefficient = )0.065), total basal area increased SRplot

by increasing Nlitter (indirect path coefficient = 0.171), and

understorey cover increased SRplot via increasing Nlitter (indi-

rect path coefficient = 0.116).

Results presented earlier focus on direct and indirect effects

of overstorey individuals on resources and hence, on overall

species richness. The models demonstrate that understorey

cover can also play a role in influencing species richness. Here,

wepresentadditional evidence that species richness isnegatively

related to the abundance of particular understorey species.

Given that understorey individuals of each species were not

found in every plot, we tested the 25most abundant species one

at a time, only in plots where present, using a simple analytical

model that included the cover of the species in question, as well

as the total understorey cover and light (to eliminate possible

confounding with those variables). Species richness at the plot

scale was always highly positively related to total understorey

cover,withorwithoutanyof the species in themodel.

Of the most abundant 25 species, we show results for the

seven most abundant (defined using cover summed across all

plots, i.e. mean cover when present, multiplied by frequency)

that collectively made up almost one-third of total understorey

cover across all plots and stands. Relationships of species rich-

ness per plot with the cover of individual species were exam-

ined independently for each species in turn. For four of these

seven abundant taxa (Corylus cornutaMarsh., Eurybia macro-

phylla (L.) Cass., Abies balsamea (L.) Mill., Diervilla lonicera

(Mill.), species richness per plot was significantly and nega-

tively related with their cover (Table 1). Three of these four

(Corylus cornuta Marsh., Eurybia macrophylla, and Abies

balsamea (L.) Mill.) were among the 10 species with greatest

mean cover when present (Table 1). Two of the seven abun-

dant species (Aralia nudicaulis,Cornus canadensis) had non-sig-

nificant relations, and one species (Maianthemum canadense

Desf.) had a significant positive relationship with species rich-

ness. However, although M. canadense was the most frequent

species overall, it was not abundant on average when it was

present (ranking among species, 73rd greatest mean cover

when present) andwas rarely abundant (in<5%of the plots it

occupied did it have>5% cover), so it is difficult to envision a

Light avail BA

SRplot

Understorey

cover

–

–

0·624

0·059–0·079

0·250

Nlitter

Fig. 2. The best structural equation model (SEM) for the patch (i.e.

plot) level diversity data (v2 = 0.091, d.f. = 1, P = 0.7627; signifi-

cant models have P > 0.05). Solid black lines indicate direct positive

relationships. Dashed black lines indicate direct negative relation-

ships. Curved lines indicate correlations. Straight lines indicate direct

relationships.Lightavail = plot-levellightavailability.Nlitter = litter

Ncontent.SRplot = plot-levelspeciesrichness.BA = basalarea.
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mechanismwhereby it could influence species richness per plot.

Instead this positive relation might indicate that both species

richness and Maianthemum canadense cover were responding

to similar factors. In contrast,Corylus cornuta,Eurybia macro-

phylla,Abies balsamea andDiervilla lonicera had>25% cover

in between 1 ⁄5 and 2 ⁄5 of all plots where present, so lower spe-
cies richness in plots where these species had high cover is con-

sistent with a resource pre-emption explanation.

STAND LEVEL

The full model and the full model minus the pathway between

ANPP and SRstand fit the data well (P > 0.05). However,

because these models were <2 AIC points apart, we discuss

the results from only the more inclusive, full model. Using the

full versus reduced model did not change the significance or

direction of path coefficients. The remaining two models,

which omitted the pathways between ANPP and light avail-

ability (mean light) and variability (SD light), did not fit the

SRstand data significantly.

Increasing Nlitter and light variability (SD) both increased

SRstand (Fig. 3). ANPP and LAI were strongly positively cor-

related, while SD and mean light were moderately negatively

correlated (Fig. 3). Increasing ANPP decreased mean light,

but increased SD light (Fig. 3). ANPP also weakly increased

SRstand by increasing light variability (indirect path coeffi-

cient = 0.192).

Discussion

The analyses showed that species richness was driven by sev-

eral direct and indirect processes, as outlined in our conceptual

model and the final structural equationmodels (Figs 1–3). The

results are consistent with a classic competitive exclusion expla-

nation, because increasing abundance of the dominant over-

storey trees was associated with greater light pre-emption and

resulting lower plot-scale richness.

However, other indirect pathways involving both nitrogen

and light also contributed to impacts on species richness. First,

nitrogenavailabilityattheplotscalewaspositivelyinfluencedby

productivity and in turn positively influenced species richness.

Thus, impactsofoverstoreydominantsonspeciesrichnesscould

follow alternate and offsetting pathways. Second, impacts of

decreasing light availability also influenced understorey species

richness indirectlyby reducing thecoverof theoverall understo-

rey community, offsetting to somedegree the competitive exclu-

sion by the overstorey. The evidence suggests that these effects

are likely due to themost abundant andcommon species,which

appear to negatively influence understorey species richness. It is

possible thatwith increasingtreeabundance,understoreyplants

had less access to all resources, including light, water, andnutri-

ents, the latter two which were not measured sufficiently in this

contexttoaddressfurtherfromthesedata.

As hypothesized, the presence at high abundances of several

of themore common understorey species suppressed plot-scale

species richness, with their abundance in turn suppressed by

high productivity and density of the overstorey species. This is

consistent with detailed results for two intensively studied plots

which showed that Aralia nudicaulis L., Maianthemum cana-

dense and Eurybia macrophylla were negatively correlated

with, and presumably pre-empted by Corylus cornuta (Frelich,

Machado & Reich 2003). In addition, the species that caused

negative impacts in richnesswhen abundant are relatively large

in stature, or in the case of E. macrophylla, has large leaves, so

that physical and ⁄or resource pre-emption aremore likely than

for species with smaller individuals, such asM. canadense.

Our data also suggest that light heterogeneity plays a signifi-

cant role in influencing stand-scale species richness, as high

productivity led to greater light heterogeneity which enhanced

stand-scale richness. High patch-scale heterogeneity of light

equates with a higher diversity of micro-sites that as a

consequence may be occupied by a greater diversity, in aggre-

gate, of species.

One hypothesized effect (positive influence of litter %N on

basal area) was significant in the opposite direction at the plot

scale (Fig. 2). This negative relationship is non-intuitive, espe-

cially given a positive impact of basal area on litter %N. These

plot-scale patterns could plausibly occur if impacts of basal

area on litter %N represent largely a stand-scale relationship

(i.e. stands with high productivity on average have higher litter

%N on average), whereas relations of litter %N to basal area

at plot scale are driven more by heterogeneity in basal area

among plots. Given that patches (i.e. plots) with low basal area

have higher understorey cover of deciduous angiosperm

shrubs and herbs and thus are likely to have high litter %N

(Fig. 2), this could lead to a negative statistical impact of litter

%Non basal area at the plot scale. Althoughwe can only spec-

ANPPoverstorey LAI

LightmeanLightSD

SRstand

N litter

0·749

–0·271

–

Fig. 3. The full structural equation model (SEM) for the stand-level

diversity data (v2 = 6.094, d.f. = 3, P = 0.1071; significant models

haveP > 0.05). Solidblack lines indicatedirect positive relationships.

Dashed black lines indicate direct negative relationships. Gray lines

indicate non-significant relationships. Curved lines indicate

correlations. Straight lines indicate direct relationships. Lightmean =

mean light availability across plots. LightSD = standard deviation of

light availability among plots. ANPPoverstorey = ANPP of the over-

storeyat the standscale.LAI = leafarea index.
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ulate about this effect, it is largely tangential to the hypothe-

sized and demonstrated cascade of effects on species richness

and hence, has little impact on the overall results or interpreta-

tion of the study.

The stand-scale results are associated with differences

among the sampled forests. Low productivity aspen stands

(e.g. ANPP c. 2–3 Mg ha)1 year)1), which tend to be open

and relatively nutrient-rich, generally had the highest species

richness at both plot and stand scales, consistent with interpre-

tation of Hart & Chen (2008). Intermediate stand-scale species

richness was found in high productivity sites (e.g. ANPP

>4 Mg ha)1 year)1) of all three forest types, where light levels

penetrating to the understorey were lowest. The lowest stand-

scale species richness occurred in low productivity (ANPP

<3 Mg ha)1 year)1) black spruce stands that had greater un-

derstorey light availability but lower light heterogeneity than

more productive spruce stands. Such stands likely represent

the situation in which very low resource availability (nutrients

rather than light) and high environmental stress (e.g. water-

logging and high acidity) combine to limit the number of spe-

cies able to successfully tolerate local conditions.

At both the plot and stand scale, increasing resource avail-

ability and ⁄or heterogeneity largely accounted for the relation-
ships between ANPP and SR. At the stand level, accounting

for Nlitter and light heterogeneity resulted in a non-significant

residual relationship between ANPP and SRstand; at the plot

level, accounting for resource availability resulted in produc-

tivity (or the proxies used in the model) having extremely weak

effects on SRplot.

In summary, our findings showed that indirect effects of

overstorey dominants can both amplify and dampen the effects

of light pre-emption on understorey species richness. These

results suggest that simple hypotheses should address multiple

networked pathways (e.g. Jonsson & Wardle 2010) to best

assess responses in complex systems suchas plant communities.
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