253,544 research outputs found

    String Representation for the 't Hooft Loop Average in the Abelian Higgs Model

    Full text link
    Making use of the duality transformation, we derive in the Londons' limit of the Abelian Higgs Model string representation for the 't Hooft loop average defined on the string world-sheet, which yields the values of two coefficient functions parametrizing the bilocal correlator of the dual field strength tensors. The asymptotic behaviours of these functions agree with the ones obtained within the Method of Vacuum Correlators in QCD in the lowest order of perturbation theory. We demonstrate that the bilocal approximation to the Method of Vacuum Correlators is an exact result in the Londons' limit, i.e. all the higher cumulants in this limit vanish. We also show that at large distances, apart from the integration over metrics, the obtained string effective theory (which in this case reduces to the nonlinear massive axionic sigma model) coincides with the low-energy limit of the dual version of 4D compact QED, the so-called Universal Confining String Theory. We derive string tension of the Nambu-Goto term and the coupling constant of the rigidity term for the obtained string effective theory and demonstrate that the latter one is always negative, which means the stability of strings, while the positiveness of the former is confirmed by the present lattice data. These data enable us to find the Higgs boson charge and the vacuum expectation value of the Higgs field, which model QCD best of all. We also study dynamics of the weight factor of the obtained string representation for the 't Hooft average in the loop space. In conclusion, we obtain string representation for the partition function of the correlators of an arbitrary number of Higgs currents, by virtue of which we rederive the structure of the bilocal correlator of the dual field strength tensors, which yields the surface term in the string effective action.Comment: 11 pages, LaTeX, no figures, references are adde

    Dirty quantum Hall ferromagnets and quantum Hall spin glasses

    Full text link
    We study quantum Hall ferromagnets in the presence of a random electrostatic impurity potential, within the framework of a classical non-linear sigma model. We discuss the behaviour of the system using a heuristic picture for the competition between exchange and screening, and test our conclusions with extensive numerical simulations. We obtain a phase diagram for the system as a function of disorder strength and deviation of the average Landau level filling factor from unity. Screening of an impurity potential requires distortions of the spin configuration. In the absence of Zeeman coupling there is a disorder-driven, zero-temperature phase transition from a ferromagnet at weak disorder and small deviation from integer filling to a spin glass at stronger disorder or large charge deviation. We characterise the spin glass phase in terms of its magnetic and charge response, as well as its ac conductivity.Comment: 12 pages, 6 figures, REVTEX

    Evaluation of Skylab photography for water resources, San Luis Valley, Colorado

    Get PDF
    The author has identified the following significant results. Skylab S190A photography used in a stereo mode is sufficient for defining the drainage divides and drainage patterns at the regional level. This data, combined with geologic information, define the boundaries and distribution of ground water recharge and discharge areas within the basin

    Dynamics of thermalisation in small Hubbard-model systems

    Get PDF
    We study numerically the thermalisation and temporal evolution of the reduced density matrix for a two-site subsystem of a fermionic Hubbard model prepared far from equilibrium at a definite energy. Even for very small systems near quantum degeneracy, the subsystem can reach a steady state resembling equilibrium. This occurs for a non-perturbative coupling between the subsystem and the rest of the lattice where relaxation to equilibrium is Gaussian in time, in sharp contrast to perturbative results. We find similar results for random couplings, suggesting such behaviour is generic for small systems.Comment: 4 pages, 5 figure

    Three-dimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere

    Get PDF
    With the adaptation of the FLASH code we simulate magnetohydrodynamic-gravity waves and vortices as well as their response in the magnetized three-dimensional (3D) solar atmosphere at different heights to understand the localized energy transport processes. In the solar atmosphere strongly structured by gravitational and magnetic forces, we launch a localized velocity pulse (in horizontal and vertical components) within a bottom layer of 3D solar atmosphere modelled by initial VAL-IIIC conditions, which triggers waves and vortices. The rotation direction of vortices depends on the orientation of an initial perturbation. The vertical driver generates magnetoacoustic-gravity waves which result in oscillations of the transition region, and it leads to the eddies with their symmetry axis oriented vertically. The horizontal pulse excites all magnetohydrodynamic-gravity waves and horizontally oriented eddies. These waves propagate upwards, penetrate the transition region, and enter the solar corona. In the high-beta plasma regions the magnetic field lines move with the plasma and the temporal evolution show that they swirl with eddies. We estimate the energy fluxes carried out by the waves in the magnetized solar atmosphere and conclude that such wave dynamics and vortices may be significant in transporting the energy to sufficiently balance the energy losses in the localized corona. Moreover, the structure of the transition region highly affects such energy transports, and causes the channelling of the propagating waves into the inner corona.Comment: 11 Pages, 12 Figures, Accepted for the publication in MNRA

    Feshbach resonant scattering of three fermions in one-dimensional wells

    Get PDF
    We study the weak-tunnelling limit for a system of cold 40K atoms trapped in a one-dimensional optical lattice close to an s-wave Feshbach resonance. We calculate the local spectrum for three atoms at one site of the lattice within a two-channel model. Our results indicate that, for this one-dimensional system, one- and two-channel models will differ close to the Feshbach resonance, although the two theories would converge in the limit of strong Feshbach coupling. We also find level crossings in the low-energy spectrum of a single well with three atoms that may lead to quantum phase transition for an optical lattice of many wells. We discuss the stability of the system to a phase with non-uniform density.Comment: 10 pages, 5 figure

    Monitoring Challenges and Approaches for P2P File-Sharing Systems

    Get PDF
    Since the release of Napster in 1999, P2P file-sharing has enjoyed a dramatic rise in popularity. A 2000 study by Plonka on the University of Wisconsin campus network found that file-sharing accounted for a comparable volume of traffic to HTTP, while a 2002 study by Saroiu et al. on the University of Washington campus network found that file-sharing accounted for more than treble the volume of Web traffic observed, thus affirming the significance of P2P in the context of Internet traffic. Empirical studies of P2P traffic are essential for supporting the design of next-generation P2P systems, informing the provisioning of network infrastructure and underpinning the policing of P2P systems. The latter is of particular significance as P2P file-sharing systems have been implicated in supporting criminal behaviour including copyright infringement and the distribution of illegal pornograph

    Breakdown of counterflow superfluidity in a disordered quantum Hall bilayer

    Get PDF
    We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might be used to interpret experiments in the counterflow geometry and in two-terminal measurements.Comment: 7 pages, 3 figure

    Evaluation of Skylab S190-A photos for rock discrimination and comparison with ERTS imagery

    Get PDF
    There are no author-identified significant results in this report
    • …
    corecore