136 research outputs found

    Genetic and Functional Analyses of Virulence Potential of an Escherichia coli O157:H7 Strain Isolated From Super-Shedder Cattle

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 is an enteric pathogen that causes life-threatening disease in humans, with cattle being major natural reservoirs. A group of STEC O157:H7 with a dramatic combination of high virulence potentials and super-shedder bovine origin have been isolated. Here, an STEC O157:H7 isolate, JEONG-1266, was analyzed by comparative genomics, stx genotyping, and phenotypic analyses. The phylogenetic typing and whole-genome comparison consistently showed that JEONG-1266 is genetically close to EC4115 (one of 2006 Spinach outbreak isolates) and SS17 (an isolate from super-shedder cattle) strains, all of which belong to lineage I/II and Clade 8. Both lineage I/II and Clade 8 are known to be mostly associated with clinical strains with high virulence and severe clinical symptoms. Further, JEONG-1266, like EC4115 and SS17, harbors stx2a/stx2c genes, and carries Stx-encoding prophages, specifically the φstx2a-γ subtype. Possession of the φstx2a-γ subtype of Stx-encoding prophages and production of Stx2a have been shown to be a key signature associated with hypervirulent STEC O157:H7 strains. In silico virulence typing elucidated JEONG- 1266, EC4115, and SS17 shared a highly conserved profile of key virulence genes at the nucleotide sequence level. Consistently, phenotypic data showed that JEONG-1266 expressed a high level of Stx2 toxins and had the full capacity of adhesion in vitro. Taken together, our study suggests that JEONG-1266 may represent an emerging STEC O157:H7 group, which are hypervirulent strains that originate from super-shedders, that can be a threat to food safety and public health

    Distance, magnetic field and kinematics of a filamentary cloud LDN 1157

    Full text link
    LDN 1157, is one of the several clouds situated in the cloud complex, LDN 1147/1158, represents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm. The main goals of this work are (a) to map the inter-cloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, with the outflow direction and with the core magnetic field (CMF) geometry inferred from the mm- and sub-mm polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. We carried out R-band polarization observations of the stars projected on the cloud to map the pc-scale magnetic field geometry and made spectroscopic observations of the entire cloud in 12CO, C18O and N2H+ (J=1-0) lines to investigate its kinematic structure. We obtained a distance of 340±\pm3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three YSOs associated with the complex. A single filament of 1.2\sim1.2 pc in length and 0.09\sim0.09 pc in width is found to run all along the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the presence of an hour-glass morphology of the magnetic field, it is likely that the magnetic field had played an important role in the star formation process in LDN 1157. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and another complex LDN 1172/1174 which is situated 2\sim2\dgr~east of it, we found that both the complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation due to the interaction of the moving cloud with the ambient interstellar medium.Comment: 20 pages, Accepted in Astronomy & Astrophysics, Abstract has been shortened due to word limit in arxi

    TRAO Survey of Nearby Filamentary Molecular clouds, the Universal Nursery of Stars (TRAO FUNS) I. Dynamics and Chemistry of L1478 in the California Molecular Cloud

    Full text link
    "TRAO FUNS" is a project to survey Gould Belt's clouds in molecular lines. This paper presents its first results on the central region of the California molecular cloud, L1478. We performed On-The-Fly mapping observations using the Taedeok Radio Astronomy Observatory (TRAO) 14m single dish telescope equipped with a 16 multi-beam array covering \sim1.0 square degree area of this region using C18^{18}O (1-0) mainly tracing low density cloud and about 460 square arcminute area using N2_{2}H+^{+} (1-0) mainly tracing dense cores. CS (2-1) and SO (3221)(3_{2}-2_{1}) were also used simultaneously to map \sim440 square arcminute area of this region. We identified 10 filaments by applying the dendrogram technique to the C18^{18}O data-cube and 8 dense N2_{2}H+^{+} cores by using {\sc FellWalker}. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that L1478 consists of several filaments with slightly different velocities. Especially the filaments which are supercritical are found to contain dense cores detected in N2_{2}H+^{+}. Comparison of non-thermal velocity dispersions derived from C18^{18}O and N2_{2}H+^{+} for the filaments and dense cores indicates that some of dense cores share similar kinematics with those of the surrounding filaments while several dense cores have different kinematics with those of their filaments. This suggests that the formation mechanism of dense cores and filaments can be different in individual filaments depending on their morphologies and environments.Comment: 25 pages, 15 figures, accepted for publication in Ap

    Transmission of antibiotic resistance at the wildlife-livestock interface

    Get PDF
    Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock

    Multi-Hazard Risk Assessment Using Bayesian Network and Fault Tree Analysis Considering Effects of Structural Damage

    Get PDF
    Recently, South Korea experienced two strongest earthquake events in its modern history, i.e. 2016 Gyeongju (Mw 5.4) and 2017 Pohang Earthquakes (Mw 5.5). In the region generally considered as a low or moderate seismic zone, the occurrences of such earthquakes and their socio-economic consequences alarmed the general public. Moreover, those earthquake events featured a number of main- and after-shocks, which raised a significant concern about potential major catastrophes caused by multi-hazard effects. This paper presents a probabilistic framework being developed to assess such multi-hazard risk of nuclear power plants (NPPs). First, a ground motion prediction equation is represented by a Bayesian Network (BN). The relationship between main- and after-shocks, e.g. the modified Omori law is incorporated into the BN. Second, to overcome limitations in existing Probabilistic Risk Assessment (PRA) of NPPs, which often employs event tree and fault tree analysis, the BN representing the multi-hazard is connected with the fault trees constructed for the NPP. Finally, to address the impact of structural damage caused by earlier shocks on later events, the fragilities of NPP components are updated. These updated fragilities are incorporated into the fault trees connected with the BN for accurate after-shock risk assessment. The proposed methodology integrates our knowledge on the multi-hazard (BN), reliability of NPP (fault tree) and inter-hazard effect (system identification). The proposed framework is demonstrated by an NPP under main- and after-shock scenarios. Potential applications to other types of multi-hazards and future research needs are also discussed.The research was supported by the National Research Foundation of Korea (NRF) Grant (No. 2018M2A8A4052), funded by the Korean Government (MSIP)

    Emergence and Wide Dissemination of CTX-M-type ESBLs, and CMY-2- and DHA-1-type AmpC β-Lactamases in Korean Respiratory Isolates of Klebsiella pneumoniae

    Get PDF
    Respiratory isolates of Klebsiella pneumoniae in Korea during 2002-2003 were studied to determine the prevalence and types of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (PABLs). ESBL-production was tested by double-disk synergy, and genotypes of β-lactamases were determined by PCR and sequencing. ESBLs were detected in 28.4% of 373 isolates, and the most prevalent types were SHV-12 (63 isolates) and CTX-M-14 (9 isolates). Forty of 75 ESBL-producers (53.5%) also had PABLs: 21 isolates with CMY-2-like, 17 with DHA-1-like. Pulsed-field gel electrophoresis showed 19 types and 25 of 74 isolates had an identical pattern, indicating nosocomial spread. Dissemination of ESBL- and PABL-producing K. pneumoniae strains in Korea is a particular concern, as it limits the choice of antimicrobial agents for treatment of infections
    corecore