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ARTICLE

Transmission of antibiotic resistance at the
wildlife-livestock interface
Shinyoung Lee1,2, Peixin Fan1,2, Ting Liu1,2, Anni Yang 3,4, Raoul K. Boughton5, Kim M. Pepin4, Ryan S. Miller6 &

Kwangcheol Casey Jeong 1,2✉

Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, ani-

mals (wildlife and livestock), and humans, which has reduced our capacity to control life

threatening infectious disease. Yet, little is known about their transmission pathways,

especially at the wildlife-livestock interface. This study investigated the potential transmis-

sion of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by com-

paring gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans),

cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more

abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was sig-

nificantly more similar to that of feral swine captured within the cattle grazing area where the

home range of both species overlapped substantially. In addition, ARMs against medically

important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that

wildlife could be a source of ARMs colonization in livestock.
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Antibiotics play a critical role in preventing and treating
diseases in humans and animals. However, overuse of
antibiotics has caused the emergence of antibiotic-

resistant microorganisms (ARMs), one of the biggest global
challenges threatening both public and animal health1. To miti-
gate the prevalence of ARMs especially in animals, many coun-
tries have banned clinically important antibiotics for non-
therapeutic use in livestock, and recommended using
veterinary-prescribed antibiotics for therapeutic purposes2. Sig-
nificant efforts, such as antibiotic stewardship for selection,
dosage, and duration of treatment, are imposed to reduce the
prevalence of multi-drug resistant bacteria that are still prevalent
in food-producing animals3–8.

Living in the same space can increase the similarity of bacterial
community composition among individuals due to increased
sharing of resources among different hosts9–11. For example,
people who live with pets have more similar microbiota as their
pets, indicating microbiota transmission between pet owners and
their pets12,13. Spouses living together have similar gut microbiota
profiles than sibling pairs living apart, and the length of coha-
bitation is positively correlated with the similarity of microbiota
structure14. Tung et al.15 found that rates of interaction among
wild baboons within cohabitating groups can explain variation in
the gut microbiome, suggesting that close social interactions
among hosts influence gut microbiota composition. Similarly, the
bacterial community of bird’s bodies is associated with nest
microbiota that shows microbiota transmission between birds
and nests16. All these studies indicate that the interactions
between hosts and surrounding external environments are an
important extrinsic factor shaping gut microbiota17.

Cattle on cow/calf operations in the United States graze on
pastures that often overlap areas that are shared by a variety of
wildlife species. This can allow for cross-species transmission of
microbes through either direct (nose-to-nose contact) or indirect
(via shared food or water sources) mechanisms, depending on the
biosecurity practices, with the potential of transmitting
pathogens18,19. Previously, we reported a high prevalence of
ARMs in cattle raised without antibiotic use4–6. During the first
year of life, over 92% of cattle were colonized by ARMs at least
once5. Also, ARMs isolated from cattle raised without antibiotic
treatment carried multiple drug resistance genes6. These results

suggest that cattle may be acquiring ARMs through other
mechanisms than selection by antibiotic exposure. As wildlife are
reservoirs for many livestock and zoonotic diseases including
rabies, bovine tuberculosis, pseudorabies, and brucellosis20, we
hypothesized that cattle sharing space with wildlife may acquire
their ARMs. In this study, we aimed to identify potential trans-
mission pathways of ARMs at the interface of wildlife and live-
stock by comparing the microbiota composition and antibiotic
resistance genes (ARGs) between beef cattle and wildlife
according to their home ranges.

Results
High prevalence of ARMs in wildlife. To understand the pre-
valence of ARMs at the wildlife-livestock interface (Fig. 1), we
selected ARMs with ampicillin, cefotaxime, kanamycin, strepto-
mycin, or tetracycline antibiotics from samples collected (Fig. 2a
and Supplementary Data 1). Tetracycline and cefotaxime-
resistant bacteria were isolated from all sources of samples,
whereas kanamycin and streptomycin-resistant bacteria were
only found in soil and feral swine samples. The prevalence of
cefotaxime-resistant bacteria (CRB) ranged from 8.3% (cattle) to
100% (water and soil). Interestingly, the prevalence of CRB in
feral swine (51.92%, P < 0.0001) was significantly higher than in
cattle. These CRB data were surprising because a third-generation
cephalosporin antibiotic cefotaxime has not been allowed for
prophylactic use in food-producing animals due to its importance
for medical use in humans21, and it is only rarely used for animal
disease treatment22.

We further speciated CRB isolates from wildlife and livestock
samples to understand the diversity of CRB by 16 S rRNA gene
sequencing. Achromobacter spp. were the most predominant CRB
followed by Pseudomonas spp., Acinetobacter spp., Ochrobactrum
spp., and Escherichia coli (Fig. 2b). The samples from all sources
contained Achromobacter spp. except coyotes. Pseudomonas spp.
were isolated from feral swine, coyotes, water, and soil, but not
cattle. In addition, the cefotaxime-resistant opportunistic patho-
gen, Stenotrophomonas maltophilia23 was isolated from feral
swine and cattle, and a human pathogen, Rhizobium pusense24

was in cattle and soil (Fig. 2b). Taken together, the same CRB are
predominant among the samples, suggesting potential transmis-
sion of ARMs at the wildlife-livestock interface.

Fig. 1 Location of samples. The samples used in this study were collected from South Florida. Feral swine were divided into ‘FWCGA’ (dashed blue line)
and ‘FOCGA’ (dashed red line) groups based on where samples were collected. Labels represent the number of animals collected at each spot. The county-
level map of Florida was acquired through ArcGIS online, created by the EsnTrainingSvc, and the map was visualized using ArcMap 10.5.
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Distinct microbiota structure of cattle, wildlife, and the
environmental samples. In addition to the 16 S rRNA gene
sequencing of culturable bacteria (Fig. 2), in order to understand
the potential transmission of CRB at the wildlife-livestock inter-
face, we analyzed microbiota composition and structure by using
16 S rRNA gene sequencing of 113 samples from cattle (n= 47),
feral swine (n= 52), coyotes (n= 3), soil (n= 6), and water
(n= 5). In total, 13,360,504 raw sequencing reads were obtained,
and 6,034,513 reads contained Operational Taxonomic Units
(OTUs) clustered into 162,391 OTUs. The average number of
observed OTUs in each sample source was 1835 in cattle, 986 in

feral swine, 492 in coyote, 3,080 in soil, and 1,370 in water
samples, respectively (Supplementary Data 2).

Overall, alpha-diversity measured by bacterial richness (Chao 1,
P < 0.0001) and diversity (Shannon, P < 0.0001) were significantly
different among sources. Soil samples showed the highest bacterial
richness and diversity, followed by cattle, water, feral swine, and
coyote samples (Fig. 3a, b, and Supplementary Data 1). Within
animal groups, bacterial richness and diversity were significantly
higher in cattle than in feral swine and coyotes (P < 0.0001, Fig. 3a,
b). Beta-diversity measured by weighted UniFrac distances
accounting for dissimilarity in both presence and abundance of
bacteria was significantly different among sources (P= 0.001). As
shown in the principal coordinate analysis (PCoA) plot, PC1, PC2,
and PC3 explain 37.85%, 20.39%, and 14.50% of the variation,
respectively in microbiota composition among sources (Fig. 3c,
and Supplementary Data 1 P= 0.001). Environmental samples
(soil and water) and cattle microbiota were clustered closely based
on their sample types, while microbiota of feral swine and coyotes
were loosely clustered, indicating feral swine and coyotes have a
more heterogeneous microbiota structure than cattle (Fig. 3c).
While the relative abundances of bacteria were different in each
animal group, Firmicutes and Bacteroidetes were the most
prevalent phyla, accounting for 87%, 77%, and 82% in cattle,
feral swine, and coyotes, respectively (Fig. 3d). Proteobacteria and
Fusobacteria were another major phyla found in feral swine and
coyotes, respectively. Environmental samples showed diverse
bacterial composition compared to animal groups, and Proteo-
bacteria was the most abundant phylum in both soil and water.
Unlike gut microbiota of animals, the proportion of Firmicutes
was low in environmental samples. Soil samples showed a higher
proportion of Acidobacteria, Actinobacteria, Chloroflexi, and
Planctomycetes than other samples, and water samples contained
more Cyanobacteria (Fig. 3d).

Taken together, samples collected from different sources had
distinct microbiome composition and structure.

Cohabitation of feral swine and cattle in the same home range
affects microbiota composition. To further understand the
heterogeneous microbiota structure of feral swine, we tested the
hypothesis that geographical location is an important extrinsic
factor shaping their gut microbiota. We divided feral swine into
two groups based on their sampling location: feral swine caught
within cattle grazing areas (FWCGA) and feral swine caught
outside cattle grazing areas (FOCGA) (Supplementary Data 2 and
Fig. 1). Bacterial richness (Chao 1, P= 0.18) was not significantly
different (Fig. 4a and Supplementary Data 1), but diversity
(Shannon, P= 0.03) was significantly different between FWCGA
and FOCGA (Fig. 4b and Supplementary Data 1) which is con-
sistent with our hypothesis. Beta-diversity shown in the PCoA
plot measured by weighted UniFrac distances showed significant
dissimilarity between the two groups (Fig. 4c, P= 0.044) as well.
To investigate whether the age of feral swine affected the
microbiota composition, feral swine were divided into juvenile
(3–12 months) and adults (≥12 months) groups. The juvenile
group had significantly higher bacteria diversity (P= 0.037) and
tendency of higher richness (P= 0.063) compared to the adult
group (Supplementary Fig. 1a, b). In addition, significant differ-
ences were observed in the overall microbiota structure between
juvenile and adult swine based on the PCoA plot (Supplementary
Fig. 1c, P= 0.012), suggesting that geographic location and ani-
mal factors influenced the composition of the microbiota. How-
ever, all juvenile swine were caught within cattle grazing areas
while adult swine were caught inside and outside cattle grazing
areas, we further compared the microbiota composition of juve-
nile and adult feral swine of FWCGA and FOCGA. Alpha

Fig. 2 Prevalence of antibiotic-resistant microorganisms (ARMs) at the
wildlife-livestock interface. a The prevalence of ARMs by type of antibiotic
(AMP ampicillin, CTX cefotaxime, KAN kanamycin, STR streptomycin, TET
tetracycline). The error bars indicate 95% confidence intervals. The
prevalence of ARMs among different antibiotics were also compared using
a Chi-Square test as follows: cefotaxime vs. kanamycin in feral swine
(P < 0.0001), cefotaxime vs. streptomycin in feral swine (P < 0.0001),
tetracycline vs. kanamycin in feral swine (P < 0.0001), tetracycline vs.
streptomycin in feral swine (P < 0.0001), cefotaxime vs. kanamycin in cattle
(P < 0.0001), cefotaxime vs. streptomycin in cattle (P= 0.041), tetracycline
vs. kanamycin in cattle (P= 0.041), tetracycline vs. streptomycin in feral
swine (P= 0.021). Asterisks indicate a statistical difference (P < 0.05) of
each category comparison by Chi-Square test. b A phylogenetic tree of 16 S
rRNA sequences from cefotaxime resistant bacteria estimated by maximum
likelihood. Different colors indicate source of the isolate (black: feral swine,
orange: cattle, olive: coyote, green: soil, blue: water).
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diversity of gut microbiota was similar between juvenile and adult
in FWCGA (P= 0.068 and P= 0.056) (Supplementary Fig. 1d–e),
but it was significantly different between juvenile and adult in
FOCGA (P= 0.019 and P= 0.0003) (Supplementary Fig. 1g–h).
Beta diversity of gut microbiota between juvenile and adult in
FWCGA were similar (P= 0.8) (Supplementary Fig. 1f), but it
was significantly different between juvenile and adult in FOCGA

(P= 0.001) (Supplementary Fig. 1i). These data suggest that
environmental factors were critical to shape the gut microbiota.
Moreover, the sex of feral swine had no significant impact on the
formation of microbiota composition in this study (Supplemen-
tary Fig. 1j–l).

Microbiota of cattle was more similar to FWCGA than that of
FOCGA measured by weighted UniFrac distances (Fig. 4d and
Supplementary Fig. 2, and Supplementary Data 1, P < 0.0001).
The relatedness of the microbiota communities analyzed by
Unweighted Pair Group Method with Arithmetic mean
(UPGMA) showed that feral swine microbiomes were clearly
separated into two clusters based on sampling location, except a
few samples that were interspersed with another sampling group.
Microbiota communities of cattle were closer to FWCGA than
that of FOCGA (Fig. 4e). Furthermore, based on our global
positioning system (GPS) data of the animal space used for
FWCGA and FOCGA, as shown in Fig. 4f, the home ranges of
FOCGA were distributed mainly outside of cattle grazing area
with no spatial overlap with cattle home ranges or their grazing
pastures, while the home ranges of cattle were completely
overlapped with FWCGA. We also observed that FOCGA and
FWCGA had distinct home ranges with limited overlapped
activity space, which may explain the few samples we found to be
interspersed between FOCGA and FWCGA. Taken together,
these results indicate that the dissimilarities of microbiome
between FOCGA and FWCGA are consistent with the hypothesis
that cohabitation within cattle grazing area is a critical factor for
shaping microbiome structure of feral swine.

Potential transmission of microorganisms at the wildlife-
livestock interface. Since the microbiota community of cattle was
more similar to FWCGA compared to FOCGA, we further
investigated potential transmission of microorganisms among
animal groups (cattle, FWCGA, and FOCGA). A transmission
pathway analysis using SourceTracker was performed to deter-
mine the source of microbial communities in the sink samples
(i.e., recipient). First, cattle microbiomes were designated as the
sink samples and others were designated as sources (Fig. 5a). The
majority (85.6%) of cattle microbiome was conserved among
cattle. FWCGA contributed to cattle microbiome by ~11%
(Fig. 5d and Supplementary Data 1). On the other hand, FOCGA
had almost no influence on cattle (i.e., 0.003% of cattle micro-
biome originated from FOCGA). Other microbiomes including
coyotes and environmental samples had little influence on cattle
microbiota, only 3% combining all samples (Fig. 5d and Sup-
plementary Fig. 3, and Supplementary Data 1). To understand the
direction of bacteria transmission, we analyzed the opposite
direction as well, i.e., considering FWCGA (Fig. 5b) and FOCGA
(Fig. 5c) as a sink, respectively, and other microbiomes as sources.
Approximately 66–68% of microbiome communities of FWCGA
and FOCGA were shared (Fig. 5e, f, and Supplementary Fig. 4
and 5, and Supplementary Data 1). Compared to the contribution

Fig. 3 Microbiota structure in animal feces and environmental samples.
a Bacterial richness of cattle, wildlife, and environmental samples.
b Bacterial diversity of cattle, wildlife, and environmental samples. Box plots
display the median (center line), 25th and 75th percentiles (box) and 5th
and 95th percentiles (whiskers) for each individual. Asterisks indicate a
statistical difference (P < 0.05) of each category comparison. c The
principal coordinate analysis (PCoA) plot based on weighted UniFrac
distances. PCoA plots demonstrated distinct microbiota structure of cattle,
wildlife, and environmental samples (P= 0.001). d The relative abundance
of bacteria in cattle, wildlife, and environmental samples at the phylum
taxonomic level.
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Fig. 4 Comparison of the microbiota structure between cattle and feral swine groups. Bacterial richness (a) and diversity (b) of FWCGA and FOCGA.
c The PCoA plot derived from weighted UniFrac distances. d The boxplot represents a comparison of weighted UniFrac distances between cattle vs.
FWCGA and cattle vs. FOCGA, respectively. e Unweighted Pair Group Method with Arithmetic (UPGMA) tree based on weighted UniFrac distances shows
the relatedness of microbiota between individual hosts. f Utilization distributions (UDs) and the 95% isopleth of the UDs for cattle (n= 11), FWCGA
(n= 22), and FOCGA (n= 5) from April to May in 2017. Box plots display the median (center line), 25th and 75th percentiles (box) and 5th and 95th
percentiles (whiskers) for each individual.

Fig. 5 Source of bacteria between cattle and wildlife. Schematic diagram of SourceTracker analysis when cattle (a), FWCGA (b), and FOCGA (c) are the
sinks, respectively. SourceTracker estimates microbiota transmission between sinks and source. Cattle (d), FWCGA (e), and FOCGA (f) are designated as
a sink, respectively. Data from cattle, FWCGA, and FOCGA are the means of individual animals; each coyote, soil, and water samples were designated as a
single source, respectively. Colors in the pie charts distinguish sources.
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of FWCGA on cattle microbiome communities, cattle had only a
minimal effect on feral swine. Only 2% and 0.003% of microbiota
communities of FWCGA (Fig. 5e and Supplementary Fig. 4, and
Supplementary Data 1) and FOCGA (Fig. 5f and Supplementary
Fig. 5, and Supplementary Data 1) were predicted to be originated
from cattle, respectively. These data indicate that cohabitation
enhances transmission of microorganisms between animals.

Identification of shared microorganisms between cattle and
feral swine. To further identify co-occurring OTUs between cattle
and wildlife samples, core-OTUs presenting in >50% of samples
were identified in the microbiomes of cattle, FWCGA, and
FOCGA, respectively. Besides 61 OTUs detected in all three
microbiomes (i.e., cattle, FWCGA, and FOCGA), FWCGA con-
tained 67 identical OTUs with cattle, while FOCGA had only 15
identical OTUs (Fig. 6a), indicating that FWCGA had more
common bacteria with cattle than that of FOCGA. The 67 OTUs
were comprised of Firmicutes (82%), Bacteroidetes (9%), Cya-
nobacteria (7.5%), and Elusimicrobia (1.5%) phyla with 11 gen-
era, which were [Prevotella], Prevotella, Bacillus, Streptococcus,
Clostridium, Coprococcus, Dorea, Faecalibacterium, Oscillospira,
Ruminococcus, and Phascolarctobacterium (Fig. 6b, Supplemen-
tary Data 1 and Supplementary Data 3). Coyote 3, trapped within
the cattle grazing area, had 24 overlapping OTUs with cattle,
which was the highest number in coyotes, except for core-OTUs
among coyotes (Fig. 6c). The 24 OTUs were classified into Fir-
micutes (88%), Actinobacteria (4%), Chloroflexi (4%), and
Planctomycetes (4%) phyla with six genera, which were Adler-
creutzia, SHD-231, Bacillus, Anaerostipes, Butyrivibrio, and Dorea
(Fig. 6d, Supplementary Data 1 and Supplementary Data 4).

We next compared the prevalence of bacteria to identify
bacteria commonly presenting in FWCGA and cattle. From the
identified core-bacteria presenting in >50% samples (Supplemen-
tary Data 5–7), we included classified bacteria with prevalence
differences of >20% between FWCGA and FOCGA (Fig. 6e). 80%
(28 out of 35) of bacteria showed similar prevalence between
FWCGA and cattle, except the Ellin6529 class, the Thermo-
gemmatisporaceae family, the Candidatus Koribacter, Kaistobacter,
Rhodoplanes, Collinsella and Paenibacillus genera. Notably, ten
bacterial taxa were only identified in FWCGA and cattle
microbiota samples but were not isolated from FOCGA. Those
taxa belong to JG30-KF-CM45 and Chlorophyta orders; Ellin6075,
Frankiaceae, Solirubrobacteraceae, and R4-45B families; and
Caloramator, RFN20, Gemmata, and Acinetobacter genera.
Supplementary Data 8 lists the prevalence for all bacteria.

High abundance of antibiotic resistance genes in feral swine.
As transmission of microorganisms occurs at the wildlife-
livestock interface (Fig. 5), and microbiota composition and
structure of FWCGA and FOCGA were significantly different
(Fig. 4), we hypothesized that the prevalence of ARMs, including
CRB, was also different between the two feral swine groups.
Consistent with our hypothesis, as shown in Fig. 7a, FOCGA
showed a significantly higher prevalence of CRB than FWCGA
(P= 0.03). Shotgun metagenomic sequencing analysis, which was
conducted to investigate the difference in the proportion of ARGs
harbored in gut microbiota of FWCGA and FOCGA groups,
showed higher relative abundance of ARGs in FOCGA compared
to FWCGA (Fig. 7b). ARGs encoding β-lactamase (ampC),

Fig. 6 Shared bacteria between cattle and swine groups. a Co-occurrence
of OTUs between cattle and swine groups (FWCGA and FOCGA). Core-
OTUs from cattle and swine groups that were present in >50% of the
samples were identified and compared among groups. b Bacterial
classification of overlapped OTUs between FWCGA and cattle at the
phylum level. c Co-occurrence of OTUs between cattle and coyotes. In
coyote samples, OTUs in individual samples were used. d Bacterial
classification of overlapped OTUs between coyote 3 and cattle at the
phylum level. e The prevalence of core-bacteria in cattle, FWCGA, and
FOCGA at the genus taxonomic level was compared. Only classified
bacteria showing prevalence differences between FWCGA and FOCGA
>20% were included.
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multidrug resistance protein (emrYK), multidrug efflux system
(mdtCBA), methicillin resistant protein (mecR1), and vancomycin
resistance proteins (vraRS) were identified. To further validate
whether FOCGA harbor more ARGs compared to FWCGA,
qPCR was conducted to detect the abundance of the β-lactam
resistance gene (ampC) and multi-drug resistance gene (acrA).
Feral swine showed significantly higher abundance of ampC and
acrA genes in their GI tract compared to cattle, soil, and water
samples (Fig. 7c, d), which is consistent with the higher pre-
valence of ampicillin resistant bacteria in feral swine compared to
cattle (Fig. 2a). Furthermore, ampC and acrA were significantly
higher in FOCGA than FWCGA (Fig. 7e, f), which is consistent
with the CRB prevalence data (Fig. 7a and Supplementary
Data 1). Taken together, cattle and FWCGA had lower ARGs and
CRB prevalence in the GI tract compared to FOCGA.

Microbe-microbe interactions that affect the presence of CRB.
Based on the prevalence of CRB and ARGs, we hypothesized that
the gut microbiota of cattle and FWCGA may carry micro-
organisms that have a negative impact on CRB colonization in the
GI tract. To identify bacteria-bacteria interactions, we conducted
a co-occurrence network analysis between core-bacteria of feral

swine and all CRB genera that were determined by full length 16 S
rRNA gene sequencing shown in Fig. 2b (Supplementary
Data 9–11). A total of 108 associations among 54 bacterial taxa
(seven from CRB and 47 from core-bacteria) were identified
(Fig. 8a, P < 0.05, rs > 0.2 or rs <−0.2). Forty-three associations
(39.8%) were positively correlated, and 65 associations (60.2%)
were negatively correlated (Fig. 8a). To understand the difference
in the prevalence of CRB between two swine groups, we separated
the networks based on taxa that had either positive (Fig. 8b) or
negative (Fig. 8c) correlations with at least one genus of major
CRB consistently. Thirteen bacterial taxa showed consistent
positive correlations with CRB. Of these, nine bacteria were more
abundant in FWCGA than FOCGA, whereas four taxa were more
abundant in FOCGA (Fig. 8b). In particular, the four bacterial
taxa, which were abundant in FOCGA (Erwinia, Paenibacillus,
Clostridium, and Lysinibacillus genera), were strongly correlated
with CRB presence compared to other bacterial taxa, which were
abundant in FWCGA (Fig. 8b). Twenty bacteria represented
negative correlations all the time (Fig. 8e). Interestingly, the
relative abundance of all bacteria showing negative correlations
with CRB was higher in FWCGA compared to FOCGA, except
one genus (Elusimicrobium) (Fig. 8c). Through co-occurrence
network analysis between feral swine commensal bacteria and
CRB, we found that gut microbiota of FWCGA harbored more
bacteria which have negative correlations with CRB. Taken
together, the existence of those bacteria may inhibit the coloni-
zation of CRB, resulting in lower prevalence of CRB in FWCGA.
Consistently, core bacteria of cattle also contained more bacteria
with negative correlations to CRB (15/20) than bacterial taxa that
were positively correlated with CRB (5/13), coinciding with low
prevalence of CRB in cattle (Fig. 2a).

Discussion
We found that ARMs against five medically important antibiotics
are predominant at the wildlife-livestock interface. Especially
striking finding was that the prevalence of cefotaxime-resistant
bacteria was higher in wildlife and environmental samples than
grazing cattle. More generally, we found that cohabitation of
cattle and wildlife may affect the prevalence of antibiotic resis-
tance and shapes microbiota structure at the wildlife-livestock
interface.

We illustrated distinct bacterial composition and structure in
the GI tract of livestock, wildlife, and the environment with sig-
nificant similarities of microorganisms occurring among them.
The pattern of more similar gut microbiota among individuals
that spent more time in the same locations suggested transmis-
sion of gut microbiota between species. It is known that diet is the
dominant factor in shaping the gut microbiota, even though gut
microbial communities can be influenced by diverse intrinsic and
extrinsic factors25–27. Cattle are herbivores while feral swine and
coyotes are omnivores. Correspondingly, the gut microbiota of all
animals clustered by diet type28. Although the diet of cattle and
swine is generally different, cattle and swine that shared the same
resources developed similar gut microbiota profiles. The fact that
cattle showed higher bacterial diversity and richness than feral
swine and coyotes is consistent with previous work showing that
ruminants harbor more diverse microbiota than monogastric
animals because of the metabolic potential and nutritional
diversity of bacteria in ruminants29,30. However, when we
investigated microbiota of feral swine after dividing samples into
two groups based on the sampling location, we found that
microbiota of two different species were more similar based on
their proximity. Microbiota of FWCGA was closer to cattle
compared to the similarity between FOCGA and cattle, and
FWCGA had higher bacterial diversity and richness compared to

Fig. 7 Proportion of antimicrobial resistance in FWCGA, FOCGA, and
cattle. a The prevalence of CRBs in FWCGA and FOCGA. An asterisk
indicates a statistical difference (P < 0.05) of each category comparison by
Chi-Square test. b Relative abundance of antibiotic resistance genes in
FWCGA and FOCGA. c Abundance of ampC gene in cattle, wildlife, and the
environment. d Abundance of acrA gene in cattle, wildlife, and the
environment. e Abundance of ampC gene in FWCGA and FOCGA.
f Abundance of acrA gene in FWCGA and FOCGA. Box plots display the
median (center line), 25th and 75th percentiles (box) and 5th and 95th
percentiles (whiskers) for each individual. Asterisks indicate a statistical
difference (P < 0.05) of each category comparison.
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that of FOCGA, suggesting that sharing the same environments
contributed to shaping the microbiota of feral swine and cattle.

The source tracking analysis suggested that transmission of gut
microbiota among feral swine and cattle may be occurring,
especially for cattle using the same space as feral swine, empha-
sizing the risk of pathogen as well as ARMs transmission at the
wildlife-livestock interface17. Although direct transmission of
bacteria from feral swine to cattle was suggested31, it is unclear if
cattle received microorganisms directly from feral swine in this
study. Cattle might acquire bacteria from feral swine indirectly by
digesting forage grasses that have been disturbed and con-
taminated by feral swine rooting behavior32,33. However, micro-
biota of FWCGA appeared unaffected by cattle microbiota,
indicating the transmission of microorganisms may not be reci-
procal. Alternatively, one explanation could be that the coloni-
zation of bacteria originating from monogastric feral swine is

relatively high in ruminants’ digestive systems because ruminants
have more complex digestive systems34. Thus, bacteria from feral
swine might have increased opportunity to colonize in the gut of
cattle relative to other species, while bacteria from cattle might
have failed to colonize in the GI tract of feral swine. Further
studies are necessary to understand how the colonization ability
of bacteria is different in different hosts (i.e., ruminants or
monogastrics), and how the frequency and length of feral swine’s
visit in ranch affect the similarity between gut microbiota profiles
among cattle and feral swine (i.e., exposure risk).

Gut microbiota structure affects the level of colonization resis-
tance against pathogenic bacteria due to competition for
resources35. For example, immature microbiota, such as in infants,
or microbiota disturbance through antibiotic treatment is more
vulnerable to pathogens, indicating that gut microbiota have a
critical role in preventing colonization of pathogens and

Fig. 8 Association between core-bacteria and cefotaxime resistant bacteria (CRB) in feral swine. a Co-occurrence bacterial network between core-
bacteria of feral swine and major CRB genera. b Network analysis showing positive associations between core-bacteria of feral swine and CRB. c Network
analysis showing negative associations between core-bacteria of feral swine and CRB. Each pair of correlations has P-value < 0.05 and correlation
coefficients above 0.2. Node size indicates the number of connections between taxa and thickness of the lines indicates the strength of relatedness.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03520-8

8 COMMUNICATIONS BIOLOGY |           (2022) 5:585 | https://doi.org/10.1038/s42003-022-03520-8 | www.nature.com/commsbio

www.nature.com/commsbio


ARMs36,37. Our results indicated that FOCGA showed a higher
prevalence of CRB, and the prevalence of individual bacteria
showed a difference (>20%) between FOCGA and FWCGA
(Fig. 6e). Notably, the prevalence of those bacteria between
FWCGA and cattle presented similar patterns, suggesting that the
higher or lower prevalence of bacteria listed in Fig. 6e might be
associated with lower prevalence of CRB. Furthermore, co-
occurrence network analysis showed that microbe-microbe inter-
actions might have prevented colonization of specific bacteria
including CRB (Fig. 8). Even though diets of cattle and feral swine
are different, they shared similar gut microbiota with similar net-
work profiles. We found 20 bacterial taxa in feral swine showing
negative correlations with the major CRB genera (RF32 order,
RF16 family, [Prevotella], [Ruminococcus], CF231, Collinsella,
Coprobacillus, Coprococcus, Elusimicrobium, Epulopiscium, Faeca-
libacterium, Haemophilus, Oscillospira, Phascolarctobacterium,
rc4.4, Roseburia, Ruminococcus, Succinivibrio, Treponema, and
Turicibacter genera) (Fig. 8c). Of these, 19 bacteria (except Elusi-
microbium genus) were more abundant in FWCGA than FOCGA,
and cattle also contained those bacteria except Collinsella, Hae-
mophilus, [Ruminococcus], and Succinivibrio. These data suggest
that the presence of the 15 bacteria may inhibit colonization of
CRB in FWCGA and cattle. Consistent with our findings,
extended-spectrum β-lactamases (ESBLs) producing bacteria in
humans was decolonized through fecal microbiota transplantation
by improving gut microbiota in patients38. In particular, when
fecal materials with a higher abundance of Barnesiella, Bacteroides,
and Butyricimonas were transplanted to patients with New Delhi
Metallo-β-lactamase (NDM)-producing Klebsiella pneumonia,
NDM-producing K. pneumonia were decolonized from 57% of the
patients (4/7)38. Piewngam et al. also found that ESBL-producing
Enterobacteriaceae carriers had a significantly higher abundance
of Firmicutes, while non-carriers had a higher abundance of
Bacteroidetes39.

In order to understand how ARMs, transmit at the wildlife-
livestock interface, we investigated antibiotic resistance of five
medically important antibiotics to identify potential transmission
of ARMs. We found that feral swine had higher prevalence of
ARMs against ampicillin, cefotaxime, and tetracycline in the GI
tract that was significantly higher compared to cattle. Although
wild animals were not intentionally given antibiotics, they could
present a higher prevalence of ARMs as a potential reservoir.
Feral swine has diverse habitats and can acquire ARMs directly or
indirectly through the shared environments with human and
livestock (i.e., pasture, water, and soil)40. Interestingly, bacterial
richness and diversity in FOCGA were significantly lower than
FWCGA (Fig. 4), suggesting that microbiota composition may
play a role in the prevalence of ARMs and ARGs. This observa-
tion is supported by the findings that healthy gut microbiota is
negatively associated with the colonization of ARMs41. In addi-
tion, feral swine living closer to cattle showed lower CRB pre-
valence than the feral swine that were located further away
(Fig. 7a and Supplementary Data 1). The high prevalence of CRB
in feral swine compared to cattle suggests potential transmission
of ARMs from feral swine to cattle. These data suggest that there
is a substantial risk of cattle acquiring CRB from feral swine.

There may be a limitation in the number of samples included
in this study, especially unbalanced sample sizes between
FWCGA and FOCGA and low number of samples from coyote
(n= 3), especially due to difficulties to trap wild animals. Future
studies are needed to add more samples and data collection points
to determine whether our findings are reliable. In addition, it is
necessary to investigate other wildlife reported to interact with
cattle, such as birds, deer, elk, and badgers as an extrinsic factor in
shaping the microbiota of cattle42–45.

The population of feral swine in the U.S. has been expanding
rapidly over the last several decades46 despite substantial control
efforts47. There are currently about six million feral swine in
35 states including Florida48, causing increased damage to agri-
cultural crops, natural resources, endangered species, and private
property49,50. Furthermore, their contact ecology may support
transmission of zoonotic and agricultural diseases such as rabies,
bovine tuberculosis, classical swine fever, and brucellosis, showing
the importance of feral swine control20,32,51,52. Our results sup-
port the hypothesis that feral swine may readily transmit
microorganisms to cattle by showing that the closer feral swine
are to cattle, the more likely they are to share the same micro-
biota. Feral swine could interact with cattle both indirectly and
directly, however, indirect contact rate is usually higher than
direct contact rate53. As indirect contacts are most common at
food and water sites54,55, environments could be vehicles for
transferring bacteria between wildlife and livestock.

Methods
Ethics statement. Research protocols for animal capture, animal care, and animal
use were approved by the University of Florida [Protocols for feral swine
(#201408495 & #201808495) for coyote (#201408477), and for cattle
(#201709994)]. All the animals were handled and immobilized following approved
standard practices and either released back into the wild after capture, or for cattle
sampled during standard chute side ranch management practices.

Sample collection and isolation of antibiotic-resistant microorganisms. We
studied cattle and wildlife at Buck Island Ranch in South Florida (Fig. 1). Animal
feces were collected in April and May 2017 from the recto-anal junction of cattle
(Bos taurus; n= 47), feral swine (Sus scrofa; n= 52), and coyotes (Canis latrans;
n= 3) using sterile cotton swabs. All cattle were pasture-grazing females between 3
and 8 years of age. Fecal samples from feral swine were collected from 10 juvenile
(3–12 months) and 42 adults (≥12 months). Environmental samples were obtained
within the cattle ranch including soil (n= 6) and water (n= 5) samples. Swab
samples from animals were resuspended with 2 ml of TSB and 2 ml of 30% glycerol.
Soil samples were weighed first then suspended with 30% glycerol. In the case of
water samples, bacterial cells were collected by centrifugation at 3400 × g for
10 min and the pellet was resuspended with 1 ml of TSB and 1ml of 30% glycerol.
All processed samples were stored at −80 °C until use. To isolate antibiotic-
resistant microorganisms (ARMs), processed sample solutions were spread on
MacConkey agar plates (BD, USA) containing ampicillin (50 μg/mL), cefotaxime
(4 μg/mL), kanamycin (50 μg/mL), streptomycin (100 μg/mL), or tetracycline
(15 μg/mL)4, and the plates were incubated overnight at 37 °C. For the bacterial
identification, genomic DNA was extracted from randomly selected cefotaxime
resistant bacteria (CRB) with a bead-beating method, and 16 S rRNA gene was
amplified as described previously56. 16 S rRNA amplicons were sequenced after
PCR purification. The resulting sequences were compared against the NCBI
database to identify bacterial species and a maximum likelihood phylogeny was
constructed by MEGAX based on the Jukes and Cantor model with 1000 bootstrap
replications57.

Movement data and space use for cattle and feral swine. To explicitly
understand the space use of the feral swine and cattle involved in this study, we
deployed global positioning system (GPS) collars on cattle and swine during the
captures and programed the collars to record GPS fixes with a 30-min interval from
April to May in 2017. Animal space use is often quantified by the utilization
distributions (UDs; i.e., the intensity of space use for an animal)58. Home range
delineates the frequently used areas by animals for their daily activities59. Here, we
estimated the UDs for each feral swine and cattle using kernel density estimation
with the least-squares cross-validation bandwidth using “adehabitatHR”
R-package60. The 95% isopleth of UDs was used to define the home range of each
animal. We then merged the home ranges for different groups [cattle, feral swine
caught within cattle grazing areas (FWCGA), and feral swine caught outside cattle
grazing areas (FOCGA)], to visualize their spatial overlap.

16S rRNA gene sequencing. One of the sterile cryotube vials (2 ml) containing
suspended sample solutions was centrifuged to collect a pellet. The pellet was used
to extract genomic DNA with QIAamp PowerFecal DNA kit (Qiagen, USA) under
the manufacturer’s instruction. A polymerase chain reaction (PCR) was performed
to amplify V4 region of 16 S rRNA gene with dual-index primers as previously
reported61. The PCR amplicons were purified and normalized using SequalPrep
Normalization plate kit (Invitrogen, USA) and the DNA concentration was mea-
sured with Qubit 3.0 Fluorometer (Invitrogen, USA). The same amount of DNA
was pooled from each sample to construct a DNA library. Quality of the pooled
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DNA library was determined using the Agilent 2200 TapeStation System and qPCR
to ascertain the functionality of the library and the final DNA library was
sequenced with MiSeq v2, 2 × 250 cycle cartridge (Illumina, USA) on an Illumina
Miseq platform at Interdisciplinary Center for Biotechnology Research (ICBR) at
University of Florida.

Microbial community analysis. Raw 16 S rRNA sequencing data were analyzed
using the QIIME pipeline (1.9.0)62. Raw sequencing reads were demultiplexed and
assembled to paired-end reads with multiple_join_paired_ends.py and multi-
ple_split_libraries_fastq.py scripts in QIIME. Chimeric sequences were identified
with a usearch61 method, and the identified chimeric sequences were eliminated
from a FASTA file using identify_chimeric_seqs.py and filter_fasta.py scripts. The
filtered sequences were used to cluster Operational Taxonomic Units (OTUs) and
assigned to the taxonomical levels following the open-reference workflow against
the SILVA database (https://www.arb-silva.de/documentation/release-132/) with
99% identity. Final OTU table were rarefied to a lowest sequencing depth among
samples, which is 21,216, and two samples that had a smaller number of reads than
21,216 were excluded from further analysis. Alpha (Chao1 and Shannon index)
and beta diversity (weighted UniFrac distances) indices were determined with
alpha_diversity.py and core_diversity_analyses.py scripts, respectively. To calculate
genetic distances between cattle and wildlife samples, weighted UniFrac distances
were compared among samples. SourceTracker software installed in QIIME was
used to determine the extent of shared microbiota between cattle, wildlife, and
environmental samples. SourceTracker is a Bayesian approach to estimate the
proportional contributions of bacterial taxa from potential sources to a given sink
simultaneously63. This method can determine the proportion of OTUs with 99%
identity from a given set of sources that contribute to the sink. OTUs that existed in
less than two samples were excluded from the OTU table using filter_otus_-
from_otu_table.py script, and the filtered OTU table was converted from the BIOM
format to the tab-separated text format using QIIME. In the mapping file, cattle,
FWCGA, and FOCGA were designated as sink and source, respectively, when
running SourceTracker63.

Quantitative PCR for antibiotic resistance genes. Real-time quantitative PCR
(qPCR) was conducted to quantify ampC and acrA genes in DNA extracted from
all samples described above. The qPCR assays were performed using the SsoAd-
vanced Universal SYBR Green Supermix (Bio-Rad, USA) on the CFX96 Touch™
Real-Time PCR Detection System (Bio-Rad, USA). The primer sets used for
detecting the ampC gene are KCP947 (5'-CCTCTTGCTCCACATTTGCT-3') and
KCP948 (5'-ACAACGTTTGCTGTGTGACG-3'), and for acrA gene are KCP945
(5'-CTCTCAGGCAGCTTAGCCCTAA-3') and KCP946 (5'-TGCAGAGGTTCA
GTTTTGACTGTT-3'). The real-time qPCR program was as follows: initial
denaturing at 95 °C for 5 min, followed by 40 cycles of 10 s at 95 °C, 30 s at different
annealing temperatures (58 °C for ampC gene, 60 °C for acrA gene), and 30 s at
72 °C. The fluorescence data were acquired at 72 °C, and the final melting curve
was constructed with temperature ramping up from 65 to 95 °C. Standard curves
were prepared using the genomic DNA of E. coli JEONG95926. A five-fold serial
diluted calibration curve for each gene was tested in triplicate on the same
PCR plate.

Shotgun metagenomic sequencing and downstream analysis. Extracted DNA
aliquots of fecal samples from cattle, FWCGA and FOCGA were pooled together,
respectively. The library for the three DNA pools was prepared according to the
Nextera XT protocol, and the shotgun metagenomic sequencing was performed
using the MiSeq Reagent Kit v2 through the Illumina MiSeq platform. Raw data
files from shotgun sequencing were uploaded to the MG-RAST server. Pair-end
sequences were merged and analyzed using MG-RAST pipeline. Briefly, artificial
replicate sequences produced by sequencing artifacts and host specific species
sequences (Bos taurus UMD v3.0 or Sus scrofa, NCBI v10. 2) were removed.
Sequences with their length <50 bases and quality score <20 were trimmed for
further analysis. Annotation was conducted using the KEGG orthology (KO), with
a maximum e-value of 1×10−5 and a minimum identity cutoff and alignment
length of 60% and 15 bp, respectively. The sequence counts were normalized to
48,382.

Co-occurrence network analysis. To predict bacteria-bacteria interactions in gut
microbiota, co-occurrence network between core-bacteria (presence in >50% of the
samples) and major genus of CRB (identified in this study shown in Fig. 2) were
tested using pairwise Spearman correlations based on the relative abundance of
bacteria64,65. The Spearman correlations matrix was analyzed using Hmisc 3.9-3
package within the R software (version 3.6.1). The cutoff for each co-occurring pair
was above a Spearman correlation coefficient of 0.2 with P-values under 0.05. The
co-occurring networks were visualized with Gephi (http://gephi.github.io/). Nodes
in the network indicate bacterial taxa and edges that connect two nodes represent
significant correlations between bacteria. The size of nodes represents the number
of connections among the nodes and the thickness of edges reveals the strength of
correlation.

Statistics and reproducibility. For the comparison of the ARMs prevalence
among groups, a Chi-Square test was applied, and a one-way analysis of variance
(ANOVA) test was applied followed by a post-hoc Tukey’s HSD test for evaluating
the multiple comparisons of alpha diversity and qPCR data using GraphPad Prism
(version 6) or R (version 3.6.1) software. An analysis of similarities (ANOSIM) was
used to compare significant differences among microbiota structures of cattle and
wildlife based on weighted UniFrac distances, and a parametric two-sided Student’s
t-test was applied to compare the weighted UniFrac distances between FWCGA
(n= 37) and FOCGA groups (n= 13) against cattle. The relative abundance of
bacteria among different groups was compared with a group_significance.py script
in QIIME by applying an ANOVA test. P-values < 0.05 were considered as sta-
tistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 16 S metagenomics data generated and analyzed in the current study are available in
the NCBI under the BioProject number PRJNA589650. Source data underlying main
figures are presented in Supplementary Data 1.

Code availability
All custom code is available from the corresponding author upon reasonable request.
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