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ABSTRACT: Recently, South Korea experienced two strongest earthquake events in its modern history, 

i.e. 2016 Gyeongju (Mw 5.4) and 2017 Pohang Earthquakes (Mw 5.5). In the region generally considered 

as a low or moderate seismic zone, the occurrences of such earthquakes and their socio-economic 

consequences alarmed the general public. Moreover, those earthquake events featured a number of main- 

and after-shocks, which raised a significant concern about potential major catastrophes caused by multi-

hazard effects. This paper presents a probabilistic framework being developed to assess such multi-

hazard risk of nuclear power plants (NPPs). First, a ground motion prediction equation is represented by 

a Bayesian Network (BN). The relationship between main- and after-shocks, e.g. the modified Omori 

law is incorporated into the BN. Second, to overcome limitations in existing Probabilistic Risk 

Assessment (PRA) of NPPs, which often employs event tree and fault tree analysis, the BN representing 

the multi-hazard is connected with the fault trees constructed for the NPP. Finally, to address the impact 

of structural damage caused by earlier shocks on later events, the fragilities of NPP components are 

updated. These updated fragilities are incorporated into the fault trees connected with the BN for accurate 

after-shock risk assessment. The proposed methodology integrates our knowledge on the multi-hazard 

(BN), reliability of NPP (fault tree) and inter-hazard effect (system identification). The proposed 

framework is demonstrated by an NPP under main- and after-shock scenarios. Potential applications to 

other types of multi-hazards and future research needs are also discussed. 

 

1. INTRODUCTION 

For a probabilistic risk assessment (PRA) of 

nuclear power plant (NPP), the risk metric for a 

specific hazard, i.e. earthquake, can be calculated 

by convolution of system fragility and hazard 

curves. The hazard curve can be derived by 

probabilistic seismic hazard analysis (PSHA) to 

determine the annual probability of exceedance as 

a function of intensity measure, i.e. peak ground 

acceleration (PGA). Then, the fragility curve of 

each component in the NPP system is determined 

by computing the conditional probability of 

failure as a function of given intensity measure. 

The fragility curves can incorporate various 

uncertainties because of the use of available 
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physical model, empirical, experimental, and/or 

numerical data. In this PRA, the plant-level risk 

can be calculated by incorporating fault and event 

trees generally with components’ fragility curves.  

Current PRA frameworks in use focus on 

estimating the risk about each type of hazard 

separately. One of the main reasons why multi-

hazard scenarios have not been considered is that 

the probability of simultaneous occurrence of two 

different hazards such as earthquake and 

hurricane is extremely rare. However, it is noted 

that the possibility of occurrence of closely-

related multiple hazards is relatively high and may 

result in significant damage or a major disaster. 

For example, the great Tohoku earthquake and 

flooding caused by the seismic sea wave resulted 

in the catastrophe at Fukushima Daiichi nuclear 

plant (Aoki and Rothwell, 2013). This disaster 

alarmed decision makers and stakeholders of 

various infrastructures worldwide, which is 

subject to multi-hazard risk. Recently, South 

Korea experienced two strongest earthquake 

events in its modern history, i.e. 2016 Gyeongju 

(Mw 5.4) and 2017 Pohang Earthquakes (Mw 5.5). 

Those areas are generally known as low or 

moderate seismic zones, but the occurrences of 

such earthquake including a number of main- and 

after-shocks raised a significant concern about 

potential major catastrophes caused by multi-

hazard effects. 

In this research, a probabilistic multi-hazard 

risk assessment framework is developed for NPP. 

To this end, first, after a literature survey on multi-

hazard risk, the main- and after- shock is selected 

as a practical multi-hazard example for which the 

multi-hazard assessment can be developed. The 

selected multi-hazard is then modeled by 

Bayesian Network (BN). BN is a probabilistic 

graphical tool, and has been used as a decision-

making tool for a variety of natural and man-made 

hazards. To establish the relationships between 

random variables in BN, the ground motion 

prediction equation (GMPE) proposed by Boore 

and Atkinson (2008) is adopted. By constructing 

the BN based on the GMPE, a probabilistic 

inference can be made regarding the multi-hazard 

effects. Two GMPE-based BNs for main- and 

after-shock are connected through the modified 

Omori law (Yeo and Cornell, 2009; Llenos and 

Michael, 2017), which has been used by a number 

of researchers to model aftershock rates 

immediately after the occurrence of a main-shock. 

Finally, the multi-hazard model can be 

constructed by BN, GMPE, and modified Omori 

law. 

Although this BN constructed to model the 

multi-hazard can effectively represent the 

probability distribution of PGA, it cannot be 

simply extended to assess the multi-hazard risk of 

NPP due to the complexity of the NPP system. On 

the other hand, the currently used PRA approach 

can estimate the risk about single hazard, but it has 

not been utilized for multi-hazard. Therefore, to 

develop a multi-hazard PRA method having the 

merits of the both approaches, the BN is 

connected with the main methodologies of PRA, 

i.e. the fault and event tree, which represent the 

relationship between components in the NPP 

system. 

After providing theoretical backgrounds on 

BN, GMPE, modified Omori law, and fault-tree-

based PRA, the paper will present the proposed 

multi-hazard risk assessment framework. Next, 

the proposed framework will be tested for several 

scenarios of main- and after-shock sequence. 

Finally, the paper is concluded with a summary 

and future research topics. 

2. THEORETICAL BACKGROUNDS 

In our efforts to construct a new multi-hazard risk 

assessment framework for NPP, a literature 

survey about multi-hazard risk assessment was 

first conducted as summarized below. 

Kameshwar and Padgett (2014) presented a 

parameterized fragility based multi-hazard risk 

assessment procedure for a portfolio of highway 

bridges subjected to earthquake and hurricane 

events. Coupling between the risk assessment 

procedure and the parameterized fragilities 

enables a comparative assessment of the 

contributions of different hazards to the total risk. 

However, in this research, the two hazards are not 

considered as concurrent, and thus the total 
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probability is estimated by the summation of 

probabilities of two hazards. Kwag and Gupta 

(2017) proposed a Bayesian-network-based 

approach for probabilistic safety assessment of a 

nuclear facility. Because the BN enables us to 

consider general relations between various hazard 

events and conduct beyond-design-vulnerability 

assessment, the inference using BN makes it 

feasible to evaluate real-time risk for multi-hazard 

by accommodating field inspection data as 

observation for BN. However, this research also 

assumed that the likelihood of multi-hazard 

consisting of earthquake, wind, and flood is low.  

On the other hand, there has been research 

efforts to consider causal relationship between 

sequential hazards. In a study to evaluate 

appropriate percentages of design snow load (Lee 

and Rosowsky 2006), the effect of snow load was 

incorporated into the seismic fragility analysis. 

Espinoza et al. (2016) presented a multi-phase 

resilience assessment framework that can be used 

to analyze any natural threat that may have 

multiple and/or continuous impact on critical 

infrastructures. These research efforts dealt with 

multi-hazard effects with focus on correlation or 

causal relation with short elapsed time between 

hazards. 

To conduct practical risk assessment of NPP 

with multi-hazard effects of main- and after-shock 

sequence considered, it is important to develop an 

effective probabilistic model for the seismic 

hazard. In addition, the PRA of NPP should be 

able to incorporate the impact of structural 

damage caused by a main-shock on the after-

shock damage by updating the fragility. To 

address these, the following background theories 

are used in the proposed framework. 

2.1. Bayesian Network 

Bayesian Network (BN) is a probabilistic 

graphical tool, which can describe random 

variables and their probabilistic relationship by 

using nodes and arcs, respectively. Each node in a 

BN is associated with a discretized probability 

distribution with a specific number of intervals. 

On the other hand, an arc represents probabilistic 

dependency of a child node on its parent nodes by 

Conditional Probability Table (CPT). There also 

exist BN methodologies that can model 

continuous random variables without 

discretization (Fenton and Neil, 2012; Lee and 

Song, 2017). Once a BN is constructed, full joint 

PMF about all random variables can be evaluated 

by multiplication rule. Then, using available 

marginalization algorithms, one can eliminate 

variables in the constructed full joint PMF to 

obtain the marginal PMF for each random 

variables in the BN model. Through this 

probabilistic inference process of BN with pre-

calculated CPTs, the BN can provide efficient 

probabilistic inference for general selections of 

observed and unobserved nodes. 

The BN methodology has been applied to 

various engineering areas including computer 

science, diagnosis engines, decision support 

systems, and social sciences, because of the 

following merits. First, a BN provides a graphical, 

powerful, and efficient tool for modeling complex 

systems consisting multiple components having 

uncertainties. Second, a BN allows for efficient 

probabilistic updating and assessments of each 

component and system performance. Lastly, the 

BN’s graphical feature can help engineers or 

decision-makers to understand the current states 

of random variables and interdependencies 

between variables intuitively and visually. 

Recently, making use of these merits, Bensi et al. 

(2011) modeled multiple hazards on infrastructure 

systems by a BN with their interdependencies 

considered and extended the BN by including the 

utility as decision nodes. In this paper, the main- 

and after-shock sequence is modeled by BN based 

on the ground motion prediction equation and 

modified Omori law. 

2.2. Ground Motion Prediction Equation 

In PRA of an NPP, the final risk of the target 

system is calculated by convolution of the system 

fragility and the hazard curve. Especially, to 

derive the hazard curve, we need to conduct 

PSHA, which combines the probabilities of all 

earthquake scenarios with different magnitudes 

and distances in order to compute seismic hazard 

at a site. PSHA often uses an GMPE, i.e. an 
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empirical model to estimate ground motion 

intensities at the site. A general form of GMPE is 

expressed as 

ln𝑌𝑖𝑗 = 𝑓(𝑀𝑗 , 𝑅𝑖𝑗 , 𝜃𝑖) + 𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑗𝜂𝑖𝑗 (1) 

where Yij denotes the selected ground-motion 

intensity measure, e.g. peak ground acceleration 

(PGA) at site i for the earthquake event j, 

f(Mj,Rij,i) is the attenuation law to predict the 

median value of Yij given as a function of Mj 

(magnitude of event j), Rij (seismological distance 

to site i in earthquake j), and i (a set of other 

explanatory variables assigned at site i). The 

random variable ij is the intra-event residual to 

represent site-to-site uncertainty within the same 

event j while j is the inter-event residual to 

represent event-to-event uncertainty. Finally, the 

parameters ij and j represent the standard 

deviations of the intra- and inter- event residuals, 

respectively. 

There are various GMPEs using different 

attenuation laws, and PSHA usually incorporates 

uncertainties in ground motion prediction, by 

considering multiple GMPEs. Then, those 

GMPEs are integrated with probability 

distribution conditioned on parameters in GMPEs 

to derive the final hazard curve. More details of 

PSHA can be found in Yeo et al. (2009). This 

PSHA process require good understanding about 

earthquake at the specific site, and proper 

selection of GMPEs with corresponding several 

conditional probability distributions. 

Apart from the selection problem, it is not 

easy to describe the whole process of PSHA using 

BN, because the corresponding BN would be 

highly complex because of numerous nodes 

representing selections of GMPEs. Therefore, the 

BN model in this study utilizes a single GMPE 

model (Boore and Atkinson 2008) to derive 

probability distribution of PGA based on given 

information such as magnitude or distance of 

occurred earthquake. 

2.3. Modified Omori Law 

It has been generally observed that several 

earthquakes occur as a cluster within a limited 

period of time and confined to a limited interval 

in space. The main-shock is generally defined to 

be the main event representing the earthquake, 

which shows the largest magnitude among events 

in the sequence. Immediately following the 

occurrence of a main-shock, the rate of occurrence 

of the after-shocks is at its maximum, and then 

decreases. In order to achieve a multi-hazard 

framework addressing such relationship between 

main- and after-shocks, this study adopts the 

modified Omori law as follows. 

The statistical records indicate that the 

occurrence rate of the after-shocks should be 

represented by a power-law, which is generally 

referred to as the modified Omori law, i.e. 

     pMmMba
ctMt




)(
10,  (2) 

where (t,M) denotes the mean daily rate of 

aftershocks with magnitude M or larger at time t 

after main-shock with Mm, a and b are the 

productivity parameter and the slope of the 

magnitude-frequency distribution respectively, 

and c and p are so-called Omori-Utsu parameters 

characterizing a particular after-shock sequence 

with specific main-shock. These constant values 

can be estimated by regression with earthquake 

data in a specific period (Lienos and Michael, 

2017). The modified Omori law has been used by 

a number of researchers to model after-shock rates 

immediately after the occurrence of main-shock. 

For example, 62 California after-shock 

sequences with main-shock magnitudes Mm 

greater than 5.0 were fitted to the modified Omori 

law using the maximum likelihood method. The 

mean after-shock rates were described by the 

modified Omori law and the Gutenberg-Righter 

relationship. As  a result, “generic California 

model” (Llenos and Michael, 2017) was 

developed. Actually, the after-shock sequences 

data from two strongest earthquake events in 

South Korea are not enough to be fitted to the 

modified Omori law. So, in this paper, the values 

of Omori-Utsu parameters (c, p), productivity 

parameter (a), and slope (b) in the California 

model are adopted in numerical examples. 
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2.4. Fault Tree Analysis 

As discussed above, PRA of NPP often 

incorporates fault and event trees generally with 

components’ fragility curves. These curves are 

convoluted with the hazard curve to evaluate the 

plan-level risk. The event trees are essential for 

plant-level risk assessment, but only fault tree are 

utilized in this study to propose a new framework.  

A fault tree diagram is a graphical 

decomposition of an undesirable event 

representing system failure into intermediate 

events and basic events through the use of logical 

gates, e.g. AND and OR gates. The basic events 

are represented by Boolean states, which mean 

“failure” or “safe” state generally. These basic 

events are linked to the logical gates to 

characterize intermediate events. These events 

can be connected to other logic gates as well. 

Through the fault tree analysis (FTA), the 

minimal cut-sets of system can be identified in the 

form of a fault tree. 

Actual fault trees used in current practice of 

PRA of NPP have been designed mostly for single 

hazard such as an earthquake event, and such a 

fault tree cannot be used for other types of hazard, 

i.e. flood, hurricane, etc. In addition, the basic 

events of a fault tree represent components of the 

system, each of which is modeled by fragility 

curves. These fragility curves are also derived for 

single earthquake event. So, therefore, it is noted 

that the current FTA used in NPP is not able to 

deal with multi-hazard effects. This creates a 

significant limitation for the entire process of 

PRA including event and fault tree. Therefore, an 

alternative framework utilizing the current 

process of PRA is proposed as shown in the next 

section to facilitate multi-hazard PRA of NPP. 

3. PROBABILISTIC FRAMEWORK FOR 

MULTI-HAZARD 

By describing ground motion prediction equation 

and modified Omori law of main- and after-shock 

multi-hazard in a Bayesian Network framework, 

and combining the BN with fault tree analysis 

used in existing PRA methods, a probabilistic risk 

assessment framework is developed as follows. 

3.1. Bayesian Network for main- and after-shock 

Ground motion prediction equation (GMPE) 

proposed by Boore and Atkinson (2008) is 

modeled by a Bayesian Network (BN). Details of 

the selected GMPE can be found in the reference.  

First, the random variables M (magnitude of 

event), RJB (closest distances to the surface 

projection of the fault plane), and  (a set of other 

explanatory variables) in Equation (1) are selected 

as the nodes of the BN (See Figure 1). Specifically, 

  for the selected GMPE is shear wave velocity, 

Vs30. There are other variables often adopted as 

to characterize the earthquake hazard. For 

simplicity, however, such variable, e.g. fault type 

being strike-slip (“ST:SS” in Figure 1) is 

considered deterministic variable. Two additional 

deterministic variables are added as nodes in BN 

to represent the uncertainties in the intra- and 

inter-residuals. The target intensity measure in the 

GMPE, which is peak ground acceleration (PGA) 

in this study, is described as a child node (Y) of 

the deterministic and random nodes described 

above. It is generally known that BN has to be 

constructed based on causal relations between the 

nodes. The BN model described above represents 

the causal relation between the parent nodes (M, 

RJB, Vs30, intra and inter) and the child node (Y). 

 

 
 

Figure 1: Bayesian Network model representing 

Ground Motion Prediction Equation (GMPE-BN) 

 

The constructed GMPE-based BN (GMPE-

BN) is then utilized to describe a main- and after-

shock sequence. This is accomplished by 

connecting GMPE-BNs  which are developed for 

main- and after-shocks separately. This 

connection should represent probabilistic 

M

Y

RJB VS30

intra

inter

ST:SS
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information in the modified Omori law as shown 

in Figure 2. Because the magnitude of main-shock 

influences on after-shock, the parameters a and b 

in Equation (2) are connected to the Mm. If an 

observation of Mm is available from the main-

shock event, the distribution of the mean daily rate 

of aftershock,  can be derived by inference. The 

distribution of magnitude for after-shock, MA.S, is 

then generated based on the updated  by 

sampling. Finally, GMPE-BNs for main- and 

after-shock can be constructed by above BN for 

the modified Omori law.  

 

 
 

Figure 2: Bayesian Network representing the 

modified Omori law 

 

 
 

Figure 3: GMPE-BN developed for sequential shocks 

(GMPE-BNSS) 

 

Basically, the GMPE-BN model in Section 

3.1 could be used for after-shock events as well. 

Instead of modeling and using GMPE-BN’s 

separately, the BNs developed for the main- and 

the corresponding after-shocks are connected 

through the BN model representing the modified 

Omori law (Figure 2) to describe the causal 

relation between the earthquake events in the 

sequence. Figure 4 shows the final BN structure 

describing main- and after-shock, termed as 

“GMPE-BN for sequential shocks (GMPE-BNSS)” 

for the rest of this paper. The GMPE-BNSS covers 

the multi-hazard modeling, and will be connected 

with the conventional fault-tree-based PRA 

framework as described in the next section. 

3.2. Bayesian Network Connected with Fault 

Tree Analysis 

The conventional PRA framework has limitations 

in its applications to deal with multi-hazard 

effects. However, it is difficult to modify the 

event- and fault-tree-based framework and the 

PRA-based practice. Therefore, the conventional 

PRA is rather connected with the proposed 

GMPE-BNSS in this study. As the first attempt of 

such approach, the proposed framework utilizes 

fault tree analysis only for simplicity. In this 

research, the target system is the Hanul NPP 

located at Ulchin in South Korea. Among several 

fault trees available for the Hanul NPP, the tree 

about ‘seismic-induced loss of essential power 

(LEP)’ is selected, and constructed by using 

Simulink of MATLAB®  2017b. 

 

 
 

Figure 4: LEP Fault Trees of NPP at Ulchin in South 

Korea 

 

The basic events in the LEP tree include 

seismic fragility curves. The probability of the top 

event is calculated by convolution of these 

fragility curves with the hazard curve. In this 

research, to be able to assess the risk of an 

ongoing multi-hazard event, the probability 

distributions of intensity measure is updated by 

the proposed GMPE-BNss, and convoluted with 

the fragility curves in PRA of NPP. Figure 5 

illustrates the proposed PRA framework that 

connects GMPE-BNss of main- and after-shocks, 

and fault-trees of NPP. 

(Mm/A.S)

b

a

MA.SMM

MM

YM

RJB VS30

intra

inter

ST:SS

GMPE-BN for Main-Shock

MA.S

YA.S

RJB(A.S) VS30(A.S)

intra

inter

STA.S

GMPE-BN for After-Shock

(Mm/A.S)

b

a

Modified Omori law
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Figure 5: GMPE-BNss connected with Fault Tree 

4. NUMERICAL INVESTIGATIONS 

This research utilizes some specific values for 

parameters in Equation (2) because the data from 

two recent earthquakes in South Korea do not 

provide enough information to estimate the 

parameters of the modified Omori law. Therefore, 

the information from generic California model is 

utilized. To test the proposed framework, a 

scenario about main- and after-shock is created by 

using the parameter values in Table 1. 

 
Table 1: Parameters of main- and after-shock 

scenario for GMPE-BNss 

Name Assumed values Unit 

RJB Normal(30, 52) km 

Vs30 Normal(700, 502) m/s 

intra 0.502 - 

inter 0.260 - 

c 1.08 - 

p 0.05 - 

a Normal(-1.67, 0.12) - 

b Normal(0.91, 0.042) - 

 

In addition to 8 parameters listed in Table 1, 

the magnitude of main-shock is assumed as 0, 1, 

2, and 3. In calculating the failure probability 

using the fault-tree about the assumed scenario, an 

important assumption should be made regarding 

the seismic performance of the structures 

damaged during the main-shock event. To 

incorporate this point, the fragility of such 

structures need to be updated accordingly. To this 

end, system identification (SI), i.e. estimation of 

changes in system parameters based on 

measurement data such as acceleration or 

displacement, can be utilized. To obtain an 

effective SI method for this purpose, the research 

is currently underway to detect main-shock 

damage by use of Kalman or Particle Filter (Kim 

and Song, 2018). In this paper, to develop a 

prototype risk assessment framework, it is 

assumed that the fragility curves of all 

components in the LEP fault tree will increase by 

changing uncertainty index (Q) from 5% to 95% 

in the fragility (Kim et al., 2010). 

     UUm QAaaF  1/ln)(   (3) 

where a, Am, R, U, and Q are intensity measure, 

logarithmic standard deviation of inherent 

randomness and uncertainty, and index 

introduced to consider uncertainty respectively. 

 

 
 
Figure 6: Numerical investigation using assumed 

increase of failure probabilities 

 

Figure 6 shows an example of multi-hazard 

risk assessment in which the fragility curves of the 

damaged components increase because of damage 

from main-shock. Then, the failure probabilities 

of top event of constructed fault tree are calculated 

about main- and after-shock sequentially when 

the magnitude of main-shock is 0, 1, 2, and 3, 

respectively. The calculated probabilities increase 

as the magnitude of main-shock increases. In 

addition, because of the increased fragility of 

components in basic events of fault tree, the 

MM

YM

RJB VS30

intra

inter

ST:SS

GMPE-BN for Main-Shock

MA.S

YA.S

RJB(A.S) VS30(A.S)

intra

inter

STA.S

GMPE-BN for After-Shock

(Mm/A.S)

b

a

Modified Omori law

MM

YM

RJB VS30

intra

inter

ST:SS

GMPE-BN for Main-Shock

MA.S

YA.S

RJB(A.S) VS30(A.S)

intra

inter

STA.S

GMPE-BN for After-Shock

(Mm/A.S)

b

a

Modified Omori law

Damaged Components

5

, 1054.5)1( MMf Mp

0019.0)2(, MMf Mp
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0330.0)1(, MAf Mp

0362.0)2(, MAf Mp

0371.0)3(, MAf Mp
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probabilities of after-shock are bigger than those 

of main-shock in LEP, whose components are 

vulnerable to low magnitude. If there is no 

damage in each component, the failure 

probabilities for after-shock (MM = 1, 2, and 3) are 

0.0081, 0.0087, and 0.0092 respectively. Except 

for MM=1, the probabilities for after-shock are 

smaller than those for main-shock, because the 

magnitude of after-shock is small generally.  

5. CONCLUSION AND FUTURE WORK 

Because of the limited applicability of 

conventional probabilistic risk analysis (PRA) to 

multi-hazard phenomena, e.g. main- and after-

shock sequences, the ground motion prediction 

equation-based Bayesian network representing 

sequential shocks (GMPE-BNss) is proposed and 

connected with fault tree as the first attempt of 

developing a practical risk assessment framework 

for multi-hazard. In the proposed framework, only 

fault tree is exploited for simplicity, but both 

event- and fault trees will be connected with 

GMPE-BNss finally in future research.  

The numerical investigations demonstrate 

that the proposed methodology can evaluate the 

risk of sequential shocks while considering causal 

relationship between main- and after-shocks, and 

the impact of main-shock-caused damage on 

after-shock fragility. In particular, to address the 

latter, the fragility curves are increased for 

components damaged by main-shock. Although 

the fragility curves are increased by arbitrarily 

changing an index in this research, filter-based 

system identification (SI), which can identify 

changed system parameters from given output 

data of structures, is expected to help incorporate 

the effect into the proposed framework. By 

incorporating an effective SI method, the 

proposed framework is expected to facilitate 

practical multi-hazard risk assessment for 

complex engineering systems such as NPP. 

6. ACKNOWLEDGEMENT 

The research was supported by the National 

Research Foundation of Korea (NRF) Grant (No. 

2018M2A8A4052), funded by the Korean 

Government (MSIP). 

7. REFERENCES 
Aoki, M., and Rothwell, G. (2013). “A comparative 

institutional analysis of the Fukushima nuclear 

disaster: lessons and policy implications” 

Energy Policy, 53, 240–247. 

Bensi, M.T., Der Kiureghian, A., and Straub, D. 

(2011). “A Bayesian network methodology for 

infrastructure seismic risk assessment and 

decision support” Pacific Earthquake 

Engineering Research Center (PEER 2011). 

Boore, D.M., and Atkinson, G.M. (2008). “Ground-

motion prediction equations for the average 

horizontal components of PGA, PGV, and 5%-

damped PSA at spectral periods between 0.01s 

and 10.0s” Earthquake Spectra, 24(1), 99-138. 

Fenton, N. and Neil, M., (2012). “Risk Assessment 

and Decision Analysis with Bayesian Networks” 

CRC Press. 

Kim, J.H., Choi, I-K., and Park, J-H. (2010). 

“Uncertainty Analysis Methods for 

Probabilistic Seismic Risk Analysis of NPP” 

Transactions of the Korean Nuclear society 

Spring Meeting Pyeongchang, Korea, May 27-

28. 

Kim, M. and Song, J. (2018). “Parameter 

Identificatioin of Structures under Earthquake 

Excitations Using Adaptive Particle Filter and 

Ensemble Learning Method” 2018 conference 

of the Earthquake Engineering Society of Korea, 

Sep 14, Chuncheon, Korea.   

Kwag, S., and Gupta, A. (2017). “Probabilistic risk 

assessment framework for structural systems 

under multiple hazards using Bayesian statistics” 

Nuclear Engineering and Design, 315(2017), 

20-34. 

Lee, S-H., and Song, J. (2016). “Bayesian-network-

based system identification of spatial 

distribution of structural parameters” 

Engineering Structures, 127, 260–277. 

Llenos, A.L., and Michael, A.J. (2017). “Forecasting 

the (Un)Productivity of the 2014 M 6.0 South 

Napa Aftershock Sequence” Seismological 

Research Letters, 88(5), 1241-1251. 

Yeo, G. L., and Cornell, C. A. (2009). “ A probabilistic 

framework for quantification of aftershock 

ground-motion hazard in California: 

Methodology and parametric study” 

Earthquake Engineering and Structural 

Dynamics, 2009(38), 45-60. 


