32 research outputs found

    The effect of transverse ocular magnification adjustment on macular thickness profile in different refractive errors in community-based adults

    Get PDF
    Purpose Changes in retinal thickness are common in various ocular diseases. Transverse magnification due to differing ocular biometrics, in particular axial length, affects measurement of retinal thickness in different regions. This study evaluated the effect of axial length and refractive error on measured macular thickness in two community-based cohorts of healthy young adults. Methods A total of 2160 eyes of 1247 community-based participants (18–30 years; 23.4% myopes, mean axial length = 23.6mm) were included in this analysis. Macular thickness measurements were obtained using a spectral-domain optical coherence tomography (which assumes an axial length of 24.385mm). Using a custom program, retinal thickness data were extracted at the 9 Early Treatment of Diabetic Retinopathy Study (ETDRS) regions with and without correction for transverse magnificent effects, with the corrected measurements adjusting according to the participant’s axial length. Linear mixed models were used to analyse the effect of correction and its interaction with axial length or refractive group on retinal thickness. Results The raw measures (uncorrected for axial length) underestimated the true retinal thickness at the central macula, while overestimating at most non-central macular regions. There was an axial length by correction interaction effect in all but the nasal regions (all p\u3c0.05). For each 1mm increase in axial length, the central macular thickness is overestimated by 2.7–2.9μm while thicknesses at other regions were underestimated by 0.2–4.1μm. Based on the raw thickness measurements, myopes have thinner retinas than non-myopes at most non-central macular. However, this difference was no longer significant when the corrected data was used. Conclusion In a community-based sample, the raw measurements underestimate the retinal thickness at the central macula and overestimate the retinal thickness at non-central regions of the ETDRS grid. The effect of axial length and refractive error on retinal thickness is reduced after correcting for transverse magnification effects resulting from axial length differences

    Re-engaging an inactive cohort of young adults: evaluating recruitment for the Kidskin Young Adult Myopia Study

    Get PDF
    Background: Recent changes in communication technologies, including increased reliance on mobile phones and the internet, may present challenges and/or opportunities to re-engaging inactive study cohorts. We evaluate our ability to recruit participants for the Kidskin Young Adult Myopia Study (KYAMS), a follow-up of the Kidskin Study. Methods: KYAMS participants were recruited from the Kidskin Study, a sun exposure-intervention study for 5–6 yearolds running from 1995 to 1999 with most recent follow-up in 2005. From 2015 to 2019, the KYAMS used mail-outs, phone calls and social media to contact Kidskin Study participants. Multivariable logistic regression was used to identify variables associated with successful contact of a Kidskin Study participant or family member and KYAMS participation. Results: Of 1695 eligible participants, 599 (35.5%) participants (or a family member) were contacted and 303 (17.9%) participated in the KYAMS. KYAMS participation was more likely in those who participated in the 2005 follow-up (odds ratio [OR] = 5.09, 95% confidence interval [CI]: 3.67–7.06) and had a mobile phone number on record (OR = 2.25, CI: 1.57–3.23). Of those contacted, participants who were the first point of contact (OR = 4.84, CI: 2.89–8.10) and who were contacted by letter in the first (OR = 6.53, CI: 3.35–12.75) or second (OR = 5.77, CI: 2.85–11.67) round were more likely to participate in the KYAMS, compared to contact by landline phone. Conclusions: We recruited approximately one-fifth of Kidskin Study participants for the KYAMS. Participants were more likely to participate in the KYAMS if they were contacted directly, rather than through a family member, and if they were contacted by invitation letter.The KYAMS was funded by grants from Perpetual Impact Philanthropy (IPAP2015/0230) and the National Health and Medical Research Council (1121979). GL receives financial support through an Australia Government Research Training Program Scholarship. SY is supported by a National Health and Medical Research Council (NHMRC) early career fellowship. RML is supported by a NHMRC Senior Research Fellowship (#1107343) and DAM is supported by a NHMRC Practitioner Fellowship

    IMI-Onset and Progression of Myopia in Young Adults

    Get PDF
    Myopia typically starts and progresses during childhood, but onset and progression can occur during adulthood. The goals of this review are to summarize published data on myopia onset and progression in young adults, aged 18 to 40 years, to characterize myopia in this age group, to assess what is currently known, and to highlight the gaps in the current understanding. Specifically, the peer-reviewed literature was reviewed to: characterize the timeline and age of stabilization of juvenile-onset myopia; estimate the frequency of adult-onset myopia; evaluate the rate of myopia progression in adults, regardless of age of onset, both during the college years and later; describe the rate of axial elongation in myopic adults; identify risk factors for adult onset and progression; report myopia progression and axial elongation in adults who have undergone refractive surgery; and discuss myopia management and research study design. Adult-onset myopia is common, representing a third or more of all myopia in western populations, but less in East Asia, where onset during childhood is high. Clinically meaningful myopia progression continues in early adulthood and may average 1.00 diopters (D) between 20 and 30 years. Higher levels of myopia are associated with greater absolute risk of myopia-related ocular disease and visual impairment, and thus myopia in this age group requires ongoing management. Modalities established for myopia control in children would be options for adults, but it is difficult to predict their efficacy. The feasibility of studies of myopia control in adults is limited by the long duration required.</p

    Changes in refractive error during young adulthood: the effects of longitudinal screen time, ocular sun exposure, and genetic predisposition

    Get PDF
    Purpose: Changes in refractive error during young adulthood is common yet risk factors at this age are largely unexplored. This study explored risk factors for these changes, including gene–environmental interactions. Methods: Spherical equivalent refraction (SER) and axial length (AL) for 624 community-based adults were measured at 20 (baseline) and 28 years old. Participants were genotyped and their polygenic scores (PGS) for refractive error calculated. Self-reported screen time (computer, television, and mobile devices) from 20 to 28 years old were collected prospectively and longitudinal trajectories were generated. Past sun exposure was quantified using conjunctival ultraviolet autofluorescence (CUVAF) area. Results: Median change in SER and AL were −0.023 diopters (D)/year (interquartile range [IQR] = −0.062 to –0.008) and +0.01 mm/year (IQR = 0.000 to 0.026), respectively. Sex, baseline myopia, parental myopia, screen time, CUVAF, and PGS were significantly associated with myopic shift. Collectively, these factors accounted for approximately 20% of the variance in refractive error change, with screen time, CUVAF, and PGS each explaining approximately 1% of the variance. Four trajectories for total screen time were found: “consistently low” (n = 148), “consistently high” (n = 250), “consistently very high” (n = 76), and “increasing” (n = 150). Myopic shift was faster in those with “consistently high” or “consistently very high” screen time compared to “consistently-low” (P ≤ 0.031). For each z-score increase in PGS, changes in SER and AL increased by −0.005 D/year and 0.002 mm/year (P ≤ 0.045). Of the three types of screen time, only computer time was associated with myopic shift (P ≤ 0.040). There was no two- or three-way interaction effect between PGS, CUVAF, or screen time (P ≥ 0.26). Conclusions: Higher total or computer screen time, less sun exposure, and genetic predisposition are each independently associated with greater myopic shifts during young adulthood. Given that these factors explained only a small amount of the variance, there are likely other factors driving refractive error change during young adulthood

    A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration

    Get PDF
    BACKGROUND: High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. METHODS: The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. FINDINGS: In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24). INTERPRETATION: Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for. FUNDING: Supported by the Welsh Government and Fight for Sight (24WG201)

    Low-dose (0.01%) atropine eye-drops to reduce progression of myopia in children: a multicentre placebo-controlled randomised trial in the UK (CHAMP-UK)—study protocol

    Get PDF
    Background/aims: To report the protocol of a trial designed to evaluate the efficacy, safety and mechanism of action of low-dose atropine (0.01%) eye-drops for reducing progression of myopia in UK children. Methods: Multicentre, double-masked, superiority, placebo-controlled, randomised trial. We will enrol children aged 6–12 years with myopia of −0.50 dioptres or worse in both eyes. We will recruit 289 participants with an allocation ratio of 2:1 (193 atropine; 96 placebo) from five centres. Participants will instil one drop in each eye every day for 2 years and attend a research centre every 6 months. The vehicle and preservative will be the same in both study arms. The primary outcome is SER of both eyes measured by autorefractor under cycloplegia at 2 years (adjusted for baseline). Secondary outcomes include axial length, best corrected distance visual acuity, near visual acuity, reading speed, pupil diameter, accommodation, adverse event rates and allergic reactions, quality of life (EQ-5D-Y) and tolerability at 2 years. Mechanistic evaluations will include: peripheral axial length, peripheral retinal defocus, anterior chamber depth, iris colour, height and weight, activities questionnaire, ciliary body biometry and chorioretinal thickness. Endpoints from both eyes will be pooled in combined analysis using generalised estimating equations to allow for the correlation between eyes within participant. Three years after cessation of treatment, we will also evaluate refractive error and adverse events. Conclusions: The Childhood Atropine for Myopia Progression in the UK study will be the first randomised trial reporting outcomes of low-dose atropine eye-drops for children with myopia in a UK population

    A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration.

    Get PDF
    BackgroundHigh myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER.MethodsThe PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression.FindingsIn independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24).InterpretationPerformance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for.FundingSupported by the Welsh Government and Fight for Sight (24WG201)

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration

    Get PDF
    Background High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ −6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. Methods The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. Findings In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17–21%), 2% (1–3%), 8% (7–10%) and 6% (3–9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75–0.81), 0.58 (0.53–0.64), 0.71 (0.69–0.74) and 0.67 (0.62–0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92–1.24). Interpretation Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted fo

    Visual function measures of study sample.

    No full text
    <p>Visual function measures of study sample.</p
    corecore