3,784 research outputs found

    Shoveling

    Get PDF

    Phase transformations in cast superaustenitic stainless steel

    Get PDF
    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (sigma) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed

    Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms.

    Get PDF
    Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The MIC of nMgO varied from 0.5 mg/mL to 1.2 mg/mL and the minimal lethal concentration (MLC) of nMgO at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL against different pathogenic bacteria and yeasts. The most potent concentrations (MPC) of nMgO were 1.4 and/or 1.6 mg/mL, depending on the type of bacteria and yeasts tested. As the concentration of nMgO increased, the adhesion of bacteria and yeasts decreased. Moreover, S. epidermidis biofilm was disrupted at 1.6 mg/mL of nMgO. E. coli and some yeasts showed membrane damage after cultured with ≥0.5 mg/mL nMgO. Overall, nMgO killed both planktonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial mechanisms of nMgO. Production of reactive oxygen species (ROS), Ca2+ ion concentrations, and quorum sensing likely contribute to the action mechanisms of nMgO against planktonic bacteria, but transient alkaline pH of 7 to 10 or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or killing effects on bacteria such as S. epidermidis. Further studies are needed to determine if specific concentrations of nMgO at MIC, MLC or MPC level can be integrated into medical devices to evoke desired antimicrobial responses without harming host cells

    Diversity Measures: Domain-Independent Proxies for Failure in Language Model Queries

    Full text link
    Error prediction in large language models often relies on domain-specific information. In this paper, we present measures for quantification of error in the response of a large language model based on the diversity of responses to a given prompt - hence independent of the underlying application. We describe how three such measures - based on entropy, Gini impurity, and centroid distance - can be employed. We perform a suite of experiments on multiple datasets and temperature settings to demonstrate that these measures strongly correlate with the probability of failure. Additionally, we present empirical results demonstrating how these measures can be applied to few-shot prompting, chain-of-thought reasoning, and error detection

    Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    Get PDF
    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters

    Copyright, 3D Printing, and the Value of Open Vetted 3D OER

    Get PDF
    Libraries are protected from copyright lawsuits when patrons make copies, as long as signage is posted and patrons make the copies themselves. But, unlike copying or printing in libraries, self-service 3D printing in libraries is unrealistic. 3D prints take hours to finish, and troubleshooting 3D printing problems takes skill and experience. Meanwhile, the top websites for finding CAD designs to download and 3D print are rampant with copyright infringement. This presentation provides an overview of the status of copyright for 3D printing, covers the tech of why 3D printing is different from printing and copying on paper, and advocates for libraries to screen and make available, in vetted repositories, high-quality 3D-printer CAD files
    corecore