8 research outputs found

    Strong call to safeguard traditional agriculture as habitat for threatened crane species

    Get PDF
    This Scientific Impact Paper summarizes the changes in policy and practice of crane conservation that have occurred since our 2019 research in the Cheorwon Basin located in the Civilian Control Zone (CCZ) of the Republic of Korea (ROK). Changes in National Policy as well as increased engagement of conservation NGOs have led to more engagement of farmers in safeguarding crane habitat in their fields. Yet the current system of low‐intensity rice farming is dependent on military land‐use restrictions.Marianne und Dr. Fritz Walter Fischer‐StiftungZempelin StiftungPeer Reviewe

    Effects of Changing Air Temperature at Different Sleep Stages on the Subjective Evaluation of Sleep Quality

    No full text
    The thermal environment in bedrooms is important for high-quality sleep. Studies confirm that, even during sleep, the human body remains sensitive to the ambient air temperature. This study assesses how changing indoor air temperatures at different sleep stages affects the subjective evaluation of sleep quality. We compare reports from two identical sleeping environments with different thermal control systems: an IoT-based control system that adjusts the indoor air temperature according to the sleep stage and a fixed control system that maintains a constant temperature throughout the night. Ten subjects participated in the experiments and completed a questionnaire about their sleep quality. Our results show that, overall, the subjects experienced better sleep in the room with the IoT-based control system than in the one with a fixed thermal control. The mean differences in sleep satisfaction levels between the two sleeping environments were generally statistically significant in favor of the room with the IoT-based thermal control. Our results thus illustrate the suitability of using the IoT to control the air conditioning in bedrooms to provide improved sleep quality

    Origin of a pair of red-crowned cranes (Grus japonensis) found in Sarobetsu Wetland, northwestern Hokkaido, Japan: a possible crossbreeding between the island and the mainland population

    Get PDF
    Red-crowned cranes Grus japonensis, which are an endangered species, have two separate populations, a mainland population in the Eurasian continent and an island population in eastern Hokkaido, Japan. Island cranes showed three haplotypes (Gj1, Gj2 and Gj13), whereas ten haplotypes (Gj3–Gj12) were confirmed in captive cranes and stray cranes. We found Gj5 haplotype in feathers of two cranes as well as four new haplotypes in seven wild crane feathers collected in South Korea. We also found feathers in the nest in Sarobetsu Wetland in northwestern Hokkaido. While the haplotype of female-derived feathers was Gj2, that of male-derived feathers was Gj5. The results suggest that there has been crossbreeding between cranes in the island population and cranes in the mainland population

    Cryptic and cumulative impacts on the wintering habitat of the endangered black-faced spoonbill (Platalea minor) risk its long-term viability

    No full text
    The East Asian-Australasian flyway contains some of the most threatened habitats in the world, with at least 155 waterbird species reliant on the tidal habitats it comprises. The black-faced spoonbill (Platalea minor) is an iconic endangered species distributed across the coast of East Asia. Its population suffered a severe decline into the 1990s, but extensive monitoring and conservation interventions have aided a substantial recovery of the species. We used a population viability analysis based on data collected over the past two decades in conjunction with species distribution models to project spatially explicit models of population change for the next 35 years. Over nearly all scenarios of habitat loss and climate change, the global spoonbill population was projected to increase in the short-term due to low population numbers likely well below current population carrying capacities. However, climate change and habitat loss together threaten the recovery of the spoonbill population such that, by 2050, population declines are apparent as a consequence of these cumulative impacts. These threats are also cryptic and represent a challenge to the conservation of species recovering from anthropogenic impacts; observed population increases can hide large reductions in habitat suitability that threaten the long-term viability of species
    corecore