79 research outputs found
Studija o namjeri i iskustvu koriŔtenja metaverzuma
Due to the acceleration of information and communication technology in the Fourth Industrial Revolution, artificial intelligence technology has had a large impact on politics, economy, culture, and art industries. During the COVID-19 pandemic, as face to-face activities declined and video conferencing expanded, a new platform, called the metaverse, appeared. The metaverse is a digital communication technology, that become known to the public through games and entertainment, and it is gradually expanding. The metaverse also provides new education methods. For high value-added industries, the metaverse is used to foster skilled experts in a shortened training period. In the education field, the metaverse platform is being used in convergence with information technology (IT) companies. Examples include the entrance ceremony, graduation ceremony, job fair, museum experiential learning, and graduation work exhibition of the virtual world through the metaverse. In this paper, college studentsā experience of using the metaverse was studied to determine their awareness of and experience with the metaverse. Based on the potential of the metaverse platform, the MZ (Millennials and Generation Z) generationās intention to use the metaverse, and their experience with it, it is expected that this study will aid the development of the metaverse.Zbog napretka informacijskih i komunikacijskih tehnologija tijekom Äetvrte industrijske revolucije, umjetna inteligencija imala je veliki utjecaj na politiku, ekonomiju, kulturu i umjetniÄke industrije. Kako su aktivnosti ālicem u liceā opadale tijekom pandemijeCOVID-19, a video konferencije su se razvijale, pojavila se nova platforma naziva metaverzum. Metaverzum je digitalna komunikacijska tehnologija koja je postala poznata javnosti kroz igre i zabavu, i ista se postepeno Å”iri. Metaverzum nudi i nove obrazovne metode. Za industrije s velikom dodanom vrijednoÅ”Äu, metaverzum služi za smjeÅ”tanje vjeÅ”tih struÄnjaka tijekom skraÄenog perioda treniranja. U polju obrazovanja, platforma multiverzuma koristi se uskladu s tvrtkama za informacijske tehnologije. Primjeri ukljuÄuju ceremoniju dobrodoÅ”lice,promociju, sajam zanimanja, iskustveno uÄenje u muzejima i izložbu diplomskih radova koji prikazuju virtualni svijet kroz metaverzum. U ovom se radu prouÄavalo iskustvo studenata u koriÅ”tenju metaverzuma kako bi se ustvrdilo njihovu svijest i iskustvo s metaverzumom. S obzirom na potencijal platforme multiverzuma, namjeru generacije MZ (milenijalci igeneracija Z) da ga koristi i njihovo iskustvo s njim, oÄekuje se da Äe ova studija doprinijeti razvoju metaverzuma
Precessing Jet and Large Dust Grains in the V380 Ori NE Star-forming Region
The V380 Ori NE bipolar outflow was imaged in the SiO and CO J = 1 - 0 lines,
and dense cores in L1641 were observed in the 2.0-0.89 mm continuum. The highly
collimated SiO jet shows point-symmetric oscillation patterns in both position
and velocity, which suggests that the jet axis is precessing and the driving
source may belong to a non-coplanar binary system. By considering the position
and velocity variabilities together, accurate jet parameters were derived. The
protostellar system is viewed nearly edge-on, and the jet has a flow speed of
35 km/s and a precession period of 1600 years. The CO outflow length gives a
dynamical timescale of 6300 years, and the protostar must be extremely young.
The inferred binary separation of 6-70 au implies that this protobinary system
may have been formed through the disk instability process. The continuum
spectra of L1641 dense cores indicate that the emission comes from dust, and
the fits with modified blackbody functions give emissivity power indices of
beta = 0.3-2.2. The emissivity index shows a positive correlation with the
molecular line width, but no strong correlation with bolometric luminosity or
temperature. V380 Ori NE has a particularly low value of beta = 0.3, which
tentatively suggests the presence of millimeter-sized dust grains. Because the
dust growth takes millions of years, much longer than the protostellar age,
this core may have produced large grains in the starless core stage. HH 34 MMS
and HH 147 MMS also have low emissivity indices.Comment: To appear in the Astrophysical Journal Supplement Serie
Effects of Magnetic Field Orientations in Dense Cores on Gas Kinematics in Protostellar Envelopes
Theoretically, misalignment between the magnetic field and rotational axis in a dense core is considered to be dynamically important in the star formation process; however, the extent of this influence remains observationally unclear. For a sample of 32 Class 0 and I protostars in the Perseus Molecular Cloud, we analyzed gas motions using C18O data from the SMA MASSES survey and the magnetic field structures using 850 Ī¼m polarimetric data from the JCMT BISTRO-1 survey and archive. We do not find any significant correlation between the velocity gradients in the C^{18}O emission in the protostellar envelopes at a 1000 au scale and the misalignment between the outflows and magnetic field orientations in the dense cores at a 4000 au scale, and there is also no correlation between the velocity gradients and the angular dispersions of the magnetic fields. However, a significant dependence on the misalignment angles emerges after we normalize the rotational motion by the infalling motion, where the ratios increase from ā²1 to ā³1 with increasing misalignment angle. This suggests that the misalignment could prompt angular momentum transportation to the envelope scale but is not a dominant factor in determining the envelope rotation, and other parameters, such as mass accretion in protostellar sources, also play an important role. These results remain valid after taking into account projection effects. The comparison between our estimated angular momentum in the protostellar envelopes and the sizes of the known protostellar disks suggests that significant angular momentum is likely lost between radii of ā¼1000 and 100 au in protostellar envelopes
Resting-state prefrontal EEG biomarker in correlation with postoperative delirium in elderly patients
Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged >70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive statusā¢ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27ā0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated oĀ”enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ācompositionalā and ācontextualā explanations of cross-national diĀ”erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the eĀ”ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) diĀ”erences. Furthermore, crossnational variation in victimization rates is not only shaped by diĀ”erences in national context, but
also by varying composition. More speciĀ¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
The JCMT BISTRO Survey: multiwavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+
Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties, and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+ /SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214, and 850 Ī¼m. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 Ī¼m polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+wavelengths. Using both long-wavelength (POL-2, 850 Ī¼m) and short-wavelength (HAWC+, ā²200Ī¼m) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimetre bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation
The JCMT BISTRO Survey: Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry
Ā© 2021. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We have obtained sensitive dust continuum polarization observations at 850 m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (2000 au or 0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 3814 G, 4416 G, and 125 G, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.Peer reviewe
The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2
We present and analyze observations of polarized dust emission at 850 Ī¼m toward the central 1
7 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the DavisāChandrasekharāFermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 \ub1 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 \ub1 0.02. Additionally, the mean Alfv\ue9n Mach number is 0.35 \ub1 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical
The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43
We present observations of polarized dust emission at 850 Ī¼m from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10
22 2 ~ ā1023 cmā2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ā¼160 Ā± 30 Ī¼G in the main starless core and up to ā¼90 Ā± 40 Ī¼G in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĆ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores
- ā¦