8 research outputs found

    Circulating oncometabolite 2-hydroxyglutarate (2HG) as a potential biomarker for isocitrate dehydrogenase (IDH1/2) mutant cholangiocarcinoma

    Get PDF
    Isocitrate dehydrogenase (IDH) enzymes catalyze the decarboxylation of isocitrate to alpha-ketoglutarate. IDH1/2 mutations preferentially convert αKG to R-2-hydroxyglutarate (R2HG), resulting in R2HG accumulation in tumor tissues. We investigated circulating 2-hydroxyglutate (2HG) as potential biomarkers for patients with IDH-mutant (IDHmt) cholangiocarcinoma (CCA). R2HG and S-2-hydroxyglutarate (S2HG) levels in blood and tumor tissues were analyzed in a discovery cohort of IDHmt glioma and CCA patients. Results were validated in cohorts of CCA and clear cell renal cell carcinoma (ccRCC) patients. The R2HG/S2HG ratio (rRS) was significantly elevated in tumor tissues, but not in blood for IDHmt glioma patients, while circulating rRS was elevated in IDHmt CCA patients. There were overlap distributions of circulating R2HG and total 2HG (t2HG) in both IDHmt and wild-type (IDHwt) CCA patients, while there was minimal overlap in rRS values between IDHmt and IDHwt CCA patients. Using the rRS cut-off value of 1.5, the sensitivity of rRS was 90% and specificity was 96.8%. Circulating rRS is significantly increased in IDHmt CCA patients compare to IDHwt CCA patients. Circulating rRS is a sensitive and specific surrogate biomarker for IDH1/2 mutations in CCA. It can potentially be used as a tool for monitoring IDH-targeted therapy

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Novel Combinative Therapy and Integration of Circulating Tumour DNA(ctDNA)Analysis in the Management of Colorectal Cancer

    No full text
    Background: Drug resistance is the main factor limiting the efficacy of anticancer therapies. Combinative therapies are superior to monotherapies. Understanding the tumour heterogeneity and mechanisms that contribute toward resistance is a key element in personalised medicine. Herein, we aim to discover a novel combinative therapy and expand the applications of circulating tumour DNA (ctDNA) in colorectal cancer (CRC). Methods: We explored the in vitro efficacy of two drug combinations [Palbociclib with Gedatolisib (P+G) and Palbociclib with PD0325901 (P+PD)]in five CRC cell lines with different mutational status. Moreover, we analysed ctDNA and tumour samples from 10 non-metastatic rectal cancer patients during neoadjuvant chemoradiotherapy (NACRT). Results: A synergistic response to treatment with the combination of P+G is seen in all cell lines [CI range=0.10-0.85]. A synergistic response to treatment with the combination of P+PD is also seen in all cell lines [CI range=0.07-0.55], apart from LS411N [CI=not reached]. Using Reverse Phase Protein Arrays (RPPA), we observed a significant suppression of S6rp(S240/244) in all cell lines treated with the combination of P+G, without AKT reactivation. This indicated efficient inhibition of the PI3K/AKT/mTOR pathway, even in PIK3CA-mutated cell lines. The combination of P+G induced BAX and BCL-2 in PIK3CA-mutatedcell lines. Using ctDNA to identify and monitor changes in mutations over the course of NACRT, we identified additional nonsynchronous mutations which were not identified in tumour samples using next generation sequencing (NGS). Patients without pathological complete response (pCR) following NACRT had elevated KRAS levels in ctDNA during treatment and post-operatively, indicating the potential for ctDNA to monitor and evaluate response to standard and novel therapies. Conclusion: Our data supports further in vivo evaluation of P+G combinative therapy for clinical development in chemorefractory metastatic CRC. S6rp(S240/244) may be a promising biomarker of response to this drug combination. Serial ctDNA is explorable and potentially impactful in the management of CRC.</div

    Preclinical evaluation of the CDK4/6 inhibitor palbociclib in combination with a PI3K or MEK inhibitor in colorectal cancer

    No full text
    Background: Studies have demonstrated the efficacy of Palbociclib (CDK 4/6 inhibitor), Gedatolisib (PI3K/mTOR dual inhibitor) and PD0325901 (MEK1/2 inhibitor) in colorectal cancer (CRC), however single agent therapeutics are often limited by the development of resistance. Methods: We compared the anti-proliferative effects of the combination of Gedatolisib and Palbociclib and Gedatolisib and PD0325901 in five CRC cell lines with varying mutational background and tested their combinations on total and phosphoprotein levels of signaling pathway proteins. Results: The combination of Palbociclib and Gedatolisib was superior to the combination of Palbociclib and PD0325901. The combination of Palbociclib and Gedatolisib had synergistic anti-proliferative effects in all cell lines tested [CI range: 0.11-0.69] and resulted in the suppression of S6rp (S240/244), without AKT reactivation. The combination of Palbociclib and Gedatolisib increased BAX and Bcl-2 levels in PIK3CA mutated cell lines. The combination of Palbociclib and Gedatolisib caused MAPK/ERK reactivation, as seen by an increase in expression of total EGFR, regardless of the mutational status of the cells. Conclusion: This study shows that the combination of Palbociclib and Gedatolisib has synergistic anti-proliferative effects in both wild-type and mutated CRC cell lines. Separately, the phosphorylation of S6rp may be a promising biomarker of responsiveness to this combination.</p

    Annual Selected Bibliography

    No full text

    1997 Amerasia Journal

    No full text
    corecore