5,072 research outputs found
Statistical Communication Theory
Contains research objectives and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Science Foundation (Grant GP-2495)National Aeronautics and Space Administration (Grant NsG-334)National Aeronautics and Space Administration (Grant NsG-496
Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.
Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke
The Potential Trajectory of Carbapenem-Resistant Enterobacteriaceae, an Emerging Threat to Health-Care Facilities, and the Impact of the Centers for Disease Control and Prevention Toolkit.
Carbapenem-resistant Enterobacteriaceae (CRE), a group of pathogens resistant to most antibiotics and associated with high mortality, are a rising emerging public health threat. Current approaches to infection control and prevention have not been adequate to prevent spread. An important but unproven approach is to have hospitals in a region coordinate surveillance and infection control measures. Using our Regional Healthcare Ecosystem Analyst (RHEA) simulation model and detailed Orange County, California, patient-level data on adult inpatient hospital and nursing home admissions (2011-2012), we simulated the spread of CRE throughout Orange County health-care facilities under 3 scenarios: no specific control measures, facility-level infection control efforts (uncoordinated control measures), and a coordinated regional effort. Aggressive uncoordinated and coordinated approaches were highly similar, averting 2,976 and 2,789 CRE transmission events, respectively (72.2% and 77.0% of transmission events), by year 5. With moderate control measures, coordinated regional control resulted in 21.3% more averted cases (n = 408) than did uncoordinated control at year 5. Our model suggests that without increased infection control approaches, CRE would become endemic in nearly all Orange County health-care facilities within 10 years. While implementing the interventions in the Centers for Disease Control and Prevention's CRE toolkit would not completely stop the spread of CRE, it would cut its spread substantially, by half
Simulation of Lattice Polymers with Multi-Self-Overlap Ensemble
A novel family of dynamical Monte Carlo algorithms for lattice polymers is
proposed. Our central idea is to simulate an extended ensemble in which the
self-avoiding condition is systematically weakened. The degree of the
self-overlap is controlled in a similar manner as the multicanonical ensemble.
As a consequence, the ensemble --the multi-self-overlap ensemble-- contains
adequate portions of self-overlapping conformations as well as higher energy
ones. It is shown that the multi-self-overlap ensemble algorithm reproduce
correctly the canonical averages at finite temperatures of the HP model of
lattice proteins. Moreover, it outperforms massively a standard multicanonical
algorithm for a difficult example of a polymer with 8-stickers. Alternative
algorithm based on exchange Monte Carlo method is also discussed.Comment: 5 Pages, 4 Postscript figures, uses epsf.st
Characterizations of tropospheric turbulence and stability layers from aircraft observations
[1] Velocity, temperature, and specific humidity data collected by aircraft at 20-Hz resolution are analyzed for stability and turbulence parameters. Over 100 vertical profiles (mostly over the ocean) with a total of over 300 km in vertical airspace sampled are used. The compiled statistics show that anisotropy in the velocity fluctuations prevail down to the smallest spatial separations measured. A partitioning of convective versus dynamical instability indicates that in the free troposphere, the ratio of shear-produced turbulence to convectively produced turbulence increases from roughly 2:1 for weak turbulence (ϵ 10⁻⁴ m² s⁻³). For the boundary layer, this ratio is close to 1:1 for weak turbulence and roughly 2:1 for strong turbulence. There is also a correlation between the strength of the vertical shear in horizontal winds and the turbulence intensity. In the free troposphere the turbulence intensity is independent of the degree of static stability, whereas in the boundary layer the turbulence intensity increases with a fall in static stability. Vertical humidity gradients correlate with static stability for strong humidity gradients, which supports the basic notion that stable layers impede vertical mixing of trace gases and aerosols. Vertical shear correlates with vertical humidity gradient, so it appears that the effect of differential advection creating tracer gradients dominates the effect of differential advection destroying tracer gradients through shear-induced turbulence.United States. National Aeronautics and Space Administration (Grant NCC1-415)United States. National Aeronautics and Space Administration (Grant NAG1-2306
Statistical Communication Theory
Contains research objectives and reports on five research projects.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-496
Effects of transition metal substitutions on the incommensurability and spin fluctuations in BaFe2As2 by elastic and inelastic neutron scattering
The spin fluctuation spectra from nonsuperconducting Cu-substituted, and
superconducting Co-substituted, BaFe2As2 are compared quantitatively by
inelastic neutron scattering measurements and are found to be indis-
tinguishable. Whereas diffraction studies show the appearance of incommensurate
spin-density wave order in Co and Ni substituted samples, the magnetic phase
diagram for Cu substitution does not display incommensu- rate order,
demonstrating that simple electron counting based on rigid-band concepts is
invalid. These results, supported by theoretical calculations, suggest that
substitutional impurity effects in the Fe plane play a signifi- cant role in
controlling magnetism and the appearance of superconductivity, with Cu
distinguished by enhanced impurity scattering and split-band behavior.Comment: 5 pages, 5 figures, Major change in the manuscrip
Relativistic Aharonov-Casher Phase in Spin One
The Aharonov-Casher (AC) phase is calculated in relativistic wave equations
of spin one. The AC phase has previously been calculated from the Dirac-Pauli
equation using a gauge-like technique \cite{MK1,MK2}. In the spin-one case, we
use Kemmer theory (a Dirac-like particle theory) to calculate the phase in a
similar manner. However the vector formalism, the Proca theory, is more widely
known and used. In the presence of an electromagnetic field, the two theories
are `equivalent' and may be transformed into one another. We adapt these
transformations to show that the Kemmer theory results apply to the Proca
theory. Then we calculate the Aharonov-Casher phase for spin-one particles
directly in the Proca formalism.Comment: 12 page
- …
