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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

This group is interested in various aspects of statistical communication theory.
Research in progress and work proposed for the near future are summarized as follows.

1. Nonlinear Theory Based on Functional Techniques

Studies in nonlinear theory based on the functional techniques of Wiener will continue.
Some of the current problems include: the relationship between nonlinear differential
equations and the functional representation; methods for the simplification of the func-
tional representation for a nonlinear system; methods of synthesis; the approach to non-
linear oscillating systems; and applications to important engineering problems.

2. Statistics of Switching-Time Jitter

A model has been developed for switching-time jitter in a tunnel diode threshold-
crossing detector. This model satisfactorily relates the statistics of the jitter to the
load resistance, the slope of the input ramp, and the tunnel-diode characteristics. This
study will next proceed with an investigation of the switching-time jitter of transistor
switching circuits as flip-flops and Schmidt triggers. The object of this study is

(a) To obtain models for switching-time jitter in various solid-state switching
circuits.

(b) To provide optimum circuit designs to minimize the switching-time jitter for a
given device.

(c) To answer basic questions regarding the attainable noise figure of amplifiers
operating in the switching mode.

3. High-Efficiency Realization for Amplitude -Modulated Transmitters

A study is under way to investigate the feasibility of low-frequency amplitude-
modulated transmitters operating entirely in the switching mode. Pulse logic will elim-
inate the conventional modulator at a considerable increase in efficiency.

4. Model for Noise in Magnetic Tape

A study continues to develop a model for noise in the process of magnetic

tape recording. It is expected to yield a model that is capable of satisfactorily
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explaining modulation noise.

5. Theoretical Investigation of the Two-State Modulation Systems

A study is planned of the performance of two-state modulation systems in terms of
the parameters of their block diagrams. Objectives of the study are to obtain simple
design relations and, possibly, to indicate modifications of the systems which will
enhance certain performance characteristics, such as distortion in an amplifier or error
in a power conversion system.

6. Recording and Reproduction of Sound

A study of the relative effects of the normal mode structure of rooms and loud-
speakers on the reproduction of sound is nearing completion. The results are being pre-
pared for publication. The study effort has now shifted focus to problems associated with
the recording of sound. Spatial problems and problems associated with the combined
effect of reverberation during both recording and reproduction are now under inves-
tigation.

7. Continuous Waveform Estimation

Theoretical and experimental studies in the area of estimating continuous waveforms
are being continued. In the context of the analog modulation problem, performance of
various suboptimum and optimum demodulators is being analyzed. Problems such as
acquisition in the presence of noise and the effect of different message spectra are of
interest.

8. Adaptive Systems

Adaptive systems are being studied in both the communication and radar contexts.
The performance of various decision-directed schemes is being studied both theoreti-
cally and by simulation. The related problems of measurement of randomly time-
variant channels are also of interest.

9. Feedback Structures

In many cases, considerable insight can be gained into both nonlinear and linear esti-
mation problems by exploiting the Markov structure of the process. The implications
of this technique are being studied. Related problems such as noise observation matri-
ces are also being studied.

10. Space-Time Processing

The extension of the detection or estimation problem from the scalar to the vector
case is formally trivial; however, many new issues arise in the area of combined space
and time processing. These have particular application to both the seismic and sonar
problem. Work in these areas continues.

11. Nonlinear Filtering of Convolved Signals.

During the past year homomorphic system theory has been applied to problems in
nonlinear filtering. The primary result of this work is concerned with the optimization
of nonlinear filters within an arbitrary class of homomorphic systems. It has been shown
that a necessary and sufficient condition for a homomorphic system to be optimum is that
the linear portion in the canonic representation for the class be optimum under a mean-
square or integral-square error criterion.

At present, one of the most promising areas of application for this approach to
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nonlinear filtering is in the filtering of convolved signals. Problems of this class arise
typically in the detection of timing of echoes, or more generally signal detection and sep-
aration in a reverberation environment. Also, the processing of speech waveforms, par-
ticularly the extraction of the glottal waveform, require the separation of convolved
signals. It is interesting to note that the most recent and promising techniques, referred
to as the "cepstral technique" in echo timing and pitch extraction, employ a cascade of
operations identical to the canonic form for homomorphic filters that are suggested for
this class of problems, although these techniques were developed from a different point
of view. Consideration of homomorphic filters for this class of problems suggests some
possible improvements over the cepstral technique. These techniques will be investi-
gated more in detail.

12. Optimum Quantization

Exact expressions for the quantization error as a function of the quantizer param-
eters, the error-weighting function, and the amplitude probability density of the
quantizer-input signal have been derived. An algorithm based on these expressions,
which permits us to determine the specific values of the quantizer parameters that define
the optimum quantizer (with respect to some particular error-weighting function), has
been developed. This algorithm is valid for both convex and nonconvex error-weighting
functions. Both the expression for the error and the algorithm have been extended to
the case in which the quantizer-input signal is a message signal contaminated by a noise
signal.

During the past year studies have concentrated on three particular areas.

(a) Theoretical investigation of the operation of linear prefiltering and postfiltering
on quantization.

(b) Subjective evaluation of speech quantization when the number of quantizer levels
is small and there are requirements of high intelligibility and naturalness.

(c) Theoretical investigation of the autocorrelation and power density spectrum func-
tions of the quantizer-output signals.

Preliminary results in each of these areas have been obtained and reported. In con-
tinuing the work in these areas during the coming year, emphasis will be placed on
speech quantization. For speech signals, the preliminary results indicate the need to
raise questions of a subjective nature and for a more detailed analysis of the quantizer-
output signal.

In addition to these areas of research, investigations will be made of the properties
of quantizers which are optimum for quantizer inputs consisting of message signals con-
taminated by noise. Emphasis will be placed on discrete message signals. For this
case, the quantizer can be regarded as a nonlinear zero-memory filter or as a decision-
making device that indicates an estimate of the transmitted signal. The results here will
be compared with those from classical detection theory.

Y. W. Lee

A. WORK COMPLETED

1. A SUBJECTIVE STUDY OF OPTIMUM QUANTIZATION

This study has been completed by Thomas H. Nyman. In September 1965, he sub-

mitted the results to the Department of Electrical Engineering, M. I. T., as a thesis in

partial fulfillment of the requirements for the degree of Master of Science.

J. D. Bruce
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B. NONLINEAR FILTERING OF CONVOLVED SIGNALS

In 1963, Bogert, Healy, and Tukey discussed an approach to the detection and timing

of echoes. Later Noll 2 successfully applied these techniques to the detection of pitch in

speech waveforms. In brief, Bogert and his co-workers considered a signal z(t) con-

sisting of another signal y(t) and its echo,

z(t) = y(t) + a - y(t-T).

The objective of the processing which these authors propose is to determine the time T

of the echo. If we let zz(w) denote the power spectrum (or energy spectrum if z(t) is

aperiodic) of z(t), and yy(w) denote the spectrum of y(t), it follows that

Szz() = yy()[l + a 2 + 2a cos wT] (1)

or, if we take the logarithm of both sides of Eq. 1, we have

log [zz(w)] = log [z (w)] + log [1 + a 2 + 2a cos wT]. (2)

If a is sufficiently small, then (2) can be rewritten approximately as

log [ zz(W)] log [y (w)] + 2a cos wT. (3)

This expression consists of the sum of two terms, one of which is periodic (in w) and

whose period we wish to determine. Hence, by taking the logarithm of both sides of (1),

Bogert et al. transformed the original problem into one involving the sum of a periodic

and nonperiodic function, thereby relating it to one of the well-known problems in linear

filtering, although in this case the desired signal is periodic in frequency. Because

of the duality of the time and frequency

domains, however, this poses no particular
LINEAR

zz(r ) SYSTEM zz(T) SYSTEM problems, and we apply operations that
SPASS would normally be applied in the frequency

LIFTER)

domain for the linear filtering of a signal

that is periodic in frequency. Hence, a
Fig. XXI-1. System for determination

of the liftered-log-power linear time-invariant filter, for the prob-
spectrum. lem posed by Eq. 3, would correspond to

a linear frequency-invariant filter. Thus,

Bogert et al. approach this problem by thinking of the log-power spectrum, zz (w), aszz
a time series and then extracting the periodic component by conventional means. Spe-

cifically, if (3) represented a time series, we might choose to highpass-filter and

observe the frequency at which a peak in the spectrum occurred. Analogously, then, in

this problem we may pass the log spectrum through a "long-pass lifter" (the term which

they have chosen for the dual of a highpass filter) and observe the time at which a peak

QPR No. 80 168



(XXI. STATISTICAL COMMUNICATION THEORY)

occurs in the transform of the "liftered-log-power spectrum." To emphasize the duality,

and because these operations are unconventional with respect to some of the more stand-

ard types of signal processing, the transform of the log-power spectrum is referred to

as the "cepstrum" of the original time function and is expressed as a function of

"quefrency." The processing that they propose is summarized in Fig. XXI-1. The input

is taken to be the autocorrelation function of the signal z(t). The output of system A,

zz(T), is the cepstrum of z(t) and is related to zz(T) in such a way that if zz(w) and

()zz() denote the transforms of zz(T) and zz(T), respectively, then

Szz(w) = log zz(w).

The linear system that they propose is a long-pass lifter which is the dual of a highpass

filter. Thus, in the T, or "quefrency," domain the long-pass lifter can be represented

as in Fig. XXI-2.

In addition to the above-mentioned processing, Bogert et al. suggest a further

step in the echo detection. The steps thus far proposed transform the problem into a

zz()_ g(r) zz() Fig. XXI-2. Long-pass lifter.

linear filtering problem. After filtering, they suggest the possibility of moving back

toward the autocorrelation function by passing the output of the lifter through the inverse

of system A, as shown in Fig. XXI-3; this results in the transform of the "delogged

zz (0 SYSTEM INVERSE PSEUDO
zz SA LINEAR OF AUTOCOVARIANCE

SYSTEM
A

Fig. XXI-3. System for determination of the pseudo autocovariance.

liftered log spectrum," which, for brevity, they refer to as the "pseudo autocovariance."

They comment, however, that "We must emphasize that this whole inquiry into pseudo-

autocovariances is quite thoroughly empirical. We do not know, though it might not be

hard to establish, whether it is reasonable to regard such a function of the original data

as estimating something definite and reasonable. We are exploring with only heuristic

guidance."

The purpose of this report is to attempt to relate this technique, which has been

QPR No. 80 169



(XXI. STATISTICAL COMMUNICATION THEORY)

referred to as the cepstral technique, to homomorphic filtering. 3'4 This relation will

offer a more formal framework for the cepstrum and the pseudo autocovariance and may

suggest elaboration of the cepstral technique. Basically, the problem considered by

Bogert et al. is concerned with the separation of convolved signals. Specifically, the

autocorrelation function zz(T) can be expressed as

ZZ(T) yy(T) = () [(l+a 2 )u 0 (T)+au o (T-T)+au( T+T) ]

where 0 denotes convolution, and u (T) is the unit impulse. To determine the echo

timing, we wish to extract the term

2
(1+a )uo(T) + au (T-T) + au (T+T).

Since convolution satisfies the algebraic postulates of vector addition, the separation

of convolved signals falls within the class of homomorphic filtering problems. What I

wish to demonstrate is that the systems of Fig. XXI-1 and Fig. XXI-3 are both homo-

morphic systems, the system in Fig. XXI-1 having convolution as the input operation

and addition as the output operation, and that in Fig. XXI-3 having convolution as both

the input and output operations.

It has been argued 3 that a necessary and sufficient condition that a system be homo-

morphic with some operation o as the input operation and some operation o as the out-

put operation is that it be decomposable into a cascade of three systems as shown in

Fig. XXI-4. The system a is invertible and homomorphic, with o as the input opera-
-1

tion. The system p0 is invertible and

homomorphic, with addition as the input
0 + + + + 0

operation and o as the output operation.
ao L

The system L is a linear system. Com-

paring this with the system shown in

Fig. XXI-4. Canonic representation for Fig. XXI-1, we see that to show that this
homomorphic filters. system is homomorphic from convolution

to addition, we need only show that sys-
-1tem A is homomorphic from convolution to addition (system P0 for this case is taken

to be the identity system). To show that the system of Fig. XXI-3 is homomorphic from

convolution to convolution we must again show that system A is homomorphic from con-

volution to addition. Because of the fact that the inverse of a homomorphic system is

homomorphic, with the input and output operations reversed, 3 the inverse of system A

will then also have the desired properties.

Let us argue that system A is homomorphic by considering it in the frequency

domain, rather than in the time (or T) domain. Since convolution in the time domain

corresponds to multiplication in the frequency domain, and addition in the time domain

QPR No. 80 170



(XXI. STATISTICAL COMMUNICATION THEORY)

corresponds to addition in the frequency domain, it then follows that system A repre-

sented in the frequency domain, must be homomorphic from multiplication to addition.

It has been shown,3 however, that the characteristic homomorphic system for multipli-

cation is a logarithmic amplifier, which is identical to system A described in the fre-

quency domain. Hence considered in the time domain, system A is homomorphic with

convolution as the input operation and addition as the output operation. Therefore, the

systems for the computation of the liftered cepstrum and the pseudo autocovariance are

both homomorphic.

The general class of homomorphic filters for the separation of convolved signals are

of the form shown in Fig. XXI-3, with members of the class differing only in the linear

portion. The discussion above demonstrates that the system for determination of the

pseudo autocovariance is a particular example of a homomorphic filter; however, this

choice for the linear system does not necessarily result in the optimum filter. Further-

more, we may wish to impose other restrictions such as time invariance, realizability,

and so forth. Because of the canonic form for homomorphic filters, however, any such

restriction is reducible to considerations on the linear portion. In particular, the

restrictions that I would like to discuss are: insensitivity to input amplitude; time invar-

iance; and realizability.

Optimization of homomorphic filters has been discussed elsewhere,4 and it has been

shown that these filters could be considered as optimum if the linear portion is optimum

under a mean-square or integral-square error criterion.

1. Insensitivity to Input Amplitude

Linear systems have the property that if the input is scaled up or down by some

factor, then the output is scaled by the same factor. In designing a linear system for sig-

nal separation, then, we can essentially disregard the absolute amplitude of the incoming

signal, and concentrate on the relative amplitude and shapes of the signals to be sepa-

rated. With nonlinear systems in general, however, the effect of a change in input amp-

litude will affect more than just the amplitude of the output. It is interesting to note that

just as for a linear system a scaling of the input results in a scaling of the output, for

a homomorphic system the combination of an input with a scalar by means of the rule

for scalar multiplication associated with the input operation results in a combination of

the corresponding output with the same scalar, according to the rule for scalar multi-

plication associated with the output operation. For example, in the class of systems

under consideration here, if g(t) is the output for some input f(t), then the output that is

due to f(t) convolved with itself n times (where n is not necessarily an integer) is g(t)

convolved with itself n times. This is analogous to the situation for linear systems,

whereby if g(t) is the output for some input f(t), then the output that is due to f(t) added

to itself n times is g(t) added to itself n times. We may refer to the result of adding
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an input to itself n times as a change in the linear amplitude of the signal by a factor of

n and the result of convolving an input with

tional amplitude of the signal by a factor of

filter can be considered to be insensitive to

tional amplitude, a homomorphic filter for

F) In L G()

Fig. XXI-5. Canonic representation for
homomorphic filters used
for the separation of con-
volved signals.

sented in the frequency domain, as shown

Since linear amplitude in the time domai

quency domain (that is, scaling the amplitud

itself n times as a change in the convolu-

n. Whereas the performance of a linear

linear amplitude but sensitive to convolu-

the separation of convolved signals is, in

general, insensitive to convolutional

amplitude but sensitive to linear ampli-

tude. But, by imposing the necessary

restrictions on the linear portion of the

canonic representation, this class of

filters can be made insensitive to linear

amplitude. Specifically, let us consider

the canonic form for this class, repre-

in Fig. XXI-5.

n corresponds to linear amplitude in the fre-

e of a time function by some factor scales

the spectrum by the same factor), we can ask that the system of Fig. XXI-5 be insensi-

tive to linear amplitude, that is, if the input is changed by a scale factor, then the out-

put is changed by a scale factor, although both scale factors do not have to be identical.

Let us consider an input kF(w) to the system of Fig. XXI-5. Then the output Gk(w) that

is due to this input is

Gk(w) = exp{L[n kF(w)]}

Gk(w) = exp[L(ln k)+ L(in F(w))]

= G(w) exp[L(n k)],

where G(w) is the response to F(w).

tional to G(w), then we must require

exp[L(In k)] = constant

If it is required that, for any k, Gk(w) is propor-

L(ln k) = constant.

Since k is an arbitrary constant, we require that the response of the linear system

to a constant spectrum be constant. In the time domain, then, the impulse response of

the linear system must be an impulse, possibly, of different area. If the linear

portion were restricted to be time-invariant, it must then be an amplifier of

constant gain.
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2. Time Invariance

To determine the appropriate restriction on the linear system such that the system

of Fig. XXI-5 be time-invariant, let g(t) represent the response to an excitation f(t).

Then we require that g(t-T) be the response to the excitation f(t-T), for any T. Hence,

if c represents the system transformation, then we require5

c[f(t) uo(t-T)] = 4[f(t)] 0 u (t-T)

or

[f(t)] ® 4[uo(t-T)] = [f(t)] ® uo(t-T).

Hence,

[uo(t-T)] = uo (t-T)

for all T. If a( ) denotes the transformation characterizing the first system in the
-1

canonic representation, so that a-1( ) is the transformation characterizing the last sys-

tem, then

a- 1 La[u (t-T)] = u (t-T)

or

La[uo(t-T)] = a[uo(t-T)].

But the transform of u (t-T) is e- j T ; consequently,

a[u (t-T)] = -Tu l (t),

where ul(t) is the derivative of uo(t). Therefore, we require

L[-Tuo(t)] = -Tul(t)

or, since L is linear,

L[u l (t)] = u l (t).

Hence, the linear system L must satisfy the condition that its response to a unit

doublet (that is, the derivative of a unit impulse) is a unit doublet. If L were itself

restricted to be time-invariant, this would then imply that it is the identity system. Con-

sequently, the only choice for such that both and L are time-invariant is the iden-

tity transformation. Except for this case, then, if is to be time-invariant, L cannot

be. As an example of the application of the necessary and sufficient condition for the

time invariance of this class of filters, consider the system proposed by Bogetit et al.

for the determination of the pseudo autocovariance. Since the linear portion is a
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long-pass lifter, ideally the function h(t) is zero until some time To, after which it is

unity. The response of the linear system to a unit doublet ul(t) is h(t) ul(t) which,

because of the choice of h(t), is zero. Consequently, the system is not time-invariant.

On the other hand, if the linear system were, for some reason, chosen to be a short-

pass lifter, so that h(t) is unity until some time T , after which it is zero, then the

over-all system would be time-invariant.

The point of view expressed by Bogert et al., in which they treat the output of
system A as though it were a time series, suggests an interesting, and possibly useful,

notion regarding the selection of the linear filter. If we consider the log spectrum to be

a function of frequency, then the linear filter that they select is frequency-invariant,

that is, a translation of the input spectrum produces a corresponding translation in the

output spectrum. If we pursue the

r ------ duality between the time and frequency
h(t)

f(t) A g(t) domains, it is straightforward to argue
A INVERSE that whereas a linear time-invariant

S.---- filter is represented in the frequency

domain by the multiplication of the
Fig. XXI-6. Canonic form when the class

of filters is restricted to be input spectrum by some function H(w),
frequency-invariant. a linear frequency-invariant filter is

represented in the time domain by the
multiplication of the input time function by another function of time, h(t). Thus, if we
restricted the linear portion to be frequency-invariant, it would have the form shown

in Fig. XXI-6. Note that the restriction that the linear system be frequency-invariant

is equivalent to the restriction that the over-all system be frequency-invariant, because
of the form of system A and its inverse.

3. Realizability

In general, we cannot expect that the signal processing depicted by a system of the

form of Fig. XXI-5 could be carried out in real time, that is, that the output at any
instant of time is independent of future values of the input. It is certainly true that we

could not carry out in real time the signal processing in the three steps corresponding to
the three stages in the canonic representation, since both system A and its inverse are
unrealizable. This was demonstrated in effect in the previous discussion where it was
argued that the response of system A to a delayed impulse uo(t-T) is a doublet occurring
at t = 0. It might be possible, however, that with certain restrictions on the linear sys-
tem, the over-all system could be realizable, the inverse of system A "undoing" the
unrealizability introduced by A (and possibly also by the linear system). There is cer-
tainly one case, although trivial, for which this is true, namely when the linear system

is the identity system, in which case the output of the over-all system is equal to its
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input. Still, however, no necessary and sufficient conditions for realizability have been

derived. One possible means of carrying out the desired signal processing in real time

is to work, as Noll does, with the short-time spectrum. The implications of this with

respect to the formalism presented here are not yet clear.

The class of problems to which filters discussed in this report is directed, is the

separation of convolved signals. Admittedly, if one of two signals to be separated is

known, a linear, filter, whose impulse response is the inverse of the unwanted signal,

can be used. This is analogous to the separation of two signals that have been added,

by subtracting the unwanted signal from the sum. Hence, we are primarily interested

in cases in which neither of the convolved signals is known exactly. This is clearly the

case in the detection and timing of echoes, as discussed by Bogert et al. More gener-

ally, the recovery of a signal transmitted in a reverberation environment is a problem

of general interest. Such situations arise, for example in sonar, in high-fidelity

recording, in seismological studies. Multipath communication channels can also be

modelled in terms of the convolution of the transmitted signal with noise; however, in

this case, additive noise may also be an important factor, and its effect on the perform-

ance of convolutional filters must be investigated.

A. V. Oppenheim

References

1. B. P. Bogert, M. J. R. Healy, and J. W. Tukey, "The Quefrency Alanysis of Time

Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-cepstrum and Saphe

Cracking," Proceedings of the Symposium on Time Series Analysis, edited by

M. Rosenblatt (John Wiley and Sons, Inc., New York, 1963), Chap. 15, pp. 209-243.

2. A. M. Noll, "Short-Time Spectrum and 'Cepstrum' Techniques for Vocal-Pitch

Detection," J. Acoust. Soc. Am. 36, 296-302 (1963).

3. A. V. Oppenheim, "Superposition in a Class of Nonlinear Systems," Technical

Report 432, Research Laboratory of Electronics, M. I. T., March 31, 1965.

4. A. V. Oppenheim, "Optimum Homomorphic Filters," Quarterly Progress Report

No. 77, Research Laboratory of Electronics, M. I. T., April 15, 1965, pp. 248-260.

5. E. Jeenicke, "A Class of Nonlinear Filters," S. M. Thesis, Department of Electrical

Engineering, M. I. T., January 1966.

QPR No. 80 175




