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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

This group is interested in various aspects of statistical communication theory with
particular emphasis on nonlinear systems and noise. A special field of investigation is
that of two-state modulation. Current research problems are: (1) Application of gen-
eralized superposition theory to nonlinear filtering, (2) Studies in optimum quantization,
(3) Filter performance, (4) Efficient techniques for the synthesis of nonlinear systems,
(5) Analysis of nonlinear systems, (6) Coupled oscillators, (7) Analysis of commutator
machines with random inputs by Volterra functionals, (8) Study of nonlinear systems
through Kolmogorov partial differential equations, (9) Two-state circuitry problems,
(10) Noise in two-state systems, and (11) Magnetic tape noise.

1. A theory of generalized superposition which represents an application of linear
algebra to the treatment of nonlinear systems was presented by A. V. Oppenheim in

1964.1,2 The proposed research is directed toward applying this theory to nonlinear
filtering. In particular, the theory suggests an approach to signal design and filtering
in time-variant and multipath communications channels. Also, this research will be
concerned with a study leading to a generalization of the matched filter, the filter being
in general a nonlinear homomorphic system whose class is specified by the manner in
which signal and noise are combined in the channel.

2. In his research on optimum quantization, J. D. Bruce 3 ' 4 has derived an exact
expression for the quantization error as a functiorf of the parameters that define the
quantizer, the error-weighting function, and the amplitude probability density of the
quantizer-input signal. An algorithm that permits the determination of the specific val-
ues of the quantizer parameters that define the optimum quantizer has been developed.
This algorithm, which is based on a modified form of dynamic programming, is valid
for both convex and nonconvex error-weighting functions. Furthermore, this error
expression and this algorithm have been extended to the case for which the quantizer-
input signal is a message signal contaminated by a noise signal. (The contamination is

not required to be additive and the noise signal is not required to be independent of the
message signal.) Recent progress in this research is described in this quarterly report.

3. V. R. Algazi 5 has reported on a study of the message characteristics that lead
to good or poor separation from noise by linear and nonlinear filters. His work leads

to the determination of lower bounds on the filtering error for various classes of mes-
sages. This research is a new approach to filtering which is related to the work of
Balakrishnan and Tung. It circumvents the unrealistic requirement of knowing higher
order statistics of the input, and tries to find qualitative reasons for the separability of
messages in a background of noise. The work has progressed beyond the results reported
in Technical Report 420, Research Laboratory of Electronics, M. I. T., June 27, 1964,

to include the case of filters with memory.

4. Functional analysis of nonlinear systems has proved to be a useful tool for the

analysis of a wide class of nonlinear systems. Systems of this class are characterized

.This work was supported in part by the National Science Foundation (Grant GP-2495),
the National Institutes of Health (Grant MH-04737-04), and in part by the National Aero-

nautics and Space Administration (Grant NsG-496).
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by a set of kernels. Methods of efficiently synthesizing a system from its description
by a set of kernels are desirable from both practical and theoretical viewpoints. This
research is a study of such synthesis procedures. The time-domain approach will be
emphasized, and bandlimited systems and systems with sampled inputs and/or outputs
will be studied. A. M. Bush reports a part of this research in this quarterly report.

5. A study of methods of analysis for nonlinear systems is proposed. It consists
of two aspects. One is the study of various characterizations of nonlinear systems and
of their advantages and disadvantages for different applications. The other aspect of
this research is the development of practical techniques for determining the parameters
of a given characterization.

6. Many physical processes can be phenomenologically described in terms of a large
number of interacting oscillators. An example is an electric power-supply system for
a city. It is known that the stability of many systems of coupled oscillators is better
than that of any of the individual oscillators of which it is composed. This improvement
in stability is due to the nonlinear interaction of the oscillators. A theoretical model
has been devised which may be applicable to the study of such systems. Experimental
work is being performed to establish physical correspondence of actual systems to this
model. In the present phase of this study, the spectrum of a sinusoidal that is phase-
modulated by a random wave is being investigated. The case in which the random wave
is a Gaussian process has been studied. Experimental measurements for the case in
which the random wave is a quadratic and the case in which the random wave is a cubic
function of a Gaussian process are now being made.

7. The response of either a shunt of a series-wound commutator machine to its input
voltage is described by a set of nonlinear differential equations. Solutions of these equa-
tions in the form of a Volterra functional series upon the input have been obtained. These
solutions permit a new analysis of the behavior of these machines. Specifically, while
the computation of the response of such machines to stochastic inputs is all but impos-
sible to accomplish from their differential equation description, these computations have
been obtained from their Volterra series description. A part of this study is reported
by R. B. Parente in this quarterly report.

8. The first-order probability density associated with the response of a wide class
of nonlinear systems to Gaussian random processes satisfies the forward and backward
Kolmogorov partial differential equations. Also, averages, passage probabilities and
other functions of the response satisfy the equations. The study of nonlinear systems
through the Kolmogorov equations is possible in all regions of operation, and is there-
fore applicable when other methods such as linearization techniques fail. In many cases
of interest, however, the equations are too formidable for exact solution. The initial
purpose of the proposed research is to develop efficient computer solutions to the
equations.

9. T. A. Froeschle has developed two threshold detecting devices with very small
hysteresis, based on the work of A. G. Bose, and a highly flexibly two-state modulator
for laboratory use. He has also investigated high-power switching circuits and devices.
The results will be reported in his S. M. thesis.

10. An investigation is proposed that is concerned with evaluating noise in certain
kinds of two-state systems. The two-state systems of interest are ones in which a con-
tinuous input signal is converted to two-state form by a suitable modulator (such as
pulsewidth, pulse frequency, etc.). The modulator output is passed through a transmis-
sion channel, the output of which is processed by a receiver that attempts to recover the
desired modulating signal. Besides possible distortion, which is characteristic of the
modulation method used, the desired signal may be corrupted by noise arising in the
modulator, the transmission channel or in the receiver. We are particularly interested
in finding ways of evaluating the noise that originates in the circuit elements and devices
comprising various parts of the system. A part of this work has been reported by

D. E. Nelsen.
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11. A study is being made on the corruption, by noise, of a signal recorded on mag-
netic tape. This study was instigated by practical necessity when the problem of small
signal-to-noise ratios began to plague us in projects requiring direct recording of wide-
bandwidth signals. This signal-to-noise ratio is only 20-30 db, as specified by manu-
facturers of instrumentation recorders. Besides this practical stimulus, the project
has taken on great theoretical interest because of an unusual characteristic of the noise;
it is of two types. The first is the ordinary, independent noise component which is added
to the signal, while the second noise component is dependent on the magnitude of the
recorded signal. This second type of noise is called modulation noise or multiplicative
noise. The primary concern of our investigation is the noise caused by the random var-
iations in the magnetic characteristics of the tape. The goal of the study is to relate this
noise to the physical properties (i. e., dipole moment, density, arrangement, orientation)
of the magnetic particles composing the magnetic surface of the tape. R. F. Bauer
reports progress on this study in this quarterly report.

Y. W. Lee
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A. KERNELS REALIZABLE EXACTLY WITH A FINITE NUMBER OF

LINEAR SYSTEMS AND MULTIPLIERS

Schetzen 1 has discussed the synthesis of second-degree nonlinear systems using a

finite number of linear systems and multipliers. We consider here the extension of these

results to higher degree systems. We restrict our attention to systems that can be char-

acterized by a finite set of Volterra kernels, {hn(T, ...' Tn): n=0, 1, 2, .. ., N}, and we

examine only one of the kernels at a time.

The class of kernels that can be realized by means of a finite array of linear systems

and multipliers can be characterized most easily in the transform domain. We define a

kernel transform pair by

_ 1\n + joo 0 -n +jo +s1 T+...+s T n
hn(TV ... Tn)= H (s) .. e ds n

1 - n

(1)
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and

Hn ( 1 ... n) =  oo0 0-00

+00 -ST -...-s TS hn(T..., Tn) e dT 1 ... drn-00 h

Consider first a second-degree kernel and its transform

h2( T1 2) --- H2(s 1 , s2)'

The most general second-degree system that can be formed with one multiplier is

shown in Fig. XVII-1. The most general second-degree system that can be formed by

Fig. XVII-1. Canonic second-degree system.

using N multipliers is shown in Fig. XVII-2. We find it convenient to think of the system

of Fig. XVII-1 as a canonic form for second-degree systems, since all second-degree

Fig. XVII-2. Second-degree system with N multipliers.
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systems that can be realized exactly by means of a finite number of linear

systems and multipliers can be represented as a sum of these canonic sections,

as in Fig. XVII-2.

The kernel of the canonic section of Fig. XVII- 1 in terms of the impulse responses

ka(t) , kb(t), and kc(t) of the linear systems is

h 2 (T, T2) = ka(Tl-) kb(T 2-) kc(-c) do

and the corresponding kernel transform is

K 2 (s 1 , s 2 ) = Ka(s I ) Kb(S 2 ) Kc(sl+ 2 ).

Then for the system of Fig. XVII-2, we have the kernel and kernel transform

N

g2 1k (2 kra 1(-) kb (T2-c) kc(a) dc" (3)

i=l

N

G 2 (s, s) = Ka.(sl) Kbi(s 2 ) Kc.(sl+s 2 ). (4)

i=l 1

If a given kernel or kernel transform can be expressed in the form (3) or (4), for some

N, it can be realized with at most N multipliers; otherwise it cannot be realized exactly

with a finite number of linear systems and multipliers. Examples of both types of sys-

tems have been given by Schetzen.1

Let us now consider higher degree systems. It is clear that the canonic third-degree

system is as shown in Fig. XVII-3. It contains five linear systems and two multipliers.

In Fig. XVII-4 the same system is shown with the second-degree canonic form composed

Fig. XVII-3. Canonic third-degree system.
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Fig. XVII-4. Alternative form for the canonic third-degree system.

of ka(t) , kb(t), and kc(t) and one of the multipliers shown explicitly. The kernel

and the kernel transform of this canonic section are given by

k 3 (T i , T 2 , T 3 ) = ke( 2) kd(T3-o 2) kc(O 1) ka(T l-O1 -2) kb(T2-o 1- 2) do 1 do2

K 3 (s 1 , s 2 , s3) = Ka(s 1 ) Kb(S 2 ) Kc(sl+S2) Kd(S 3 ) Ke(s1 +s 2 +s 3)

or

k3 (T1, T2 , T) = ke( 2) kd(T 3 2) k2 (T-2 T2 -0) do 2

K3(s I , s 2 , s3) = K2 (s 1 , s 2 ) Kd(S 3 ) Ke(sl+s2+s 3).

If a third-degree system has a kernel transform H3 (s 1 , s 2 , s 3 ) that can be expressed as

N

H3 (ss 2, s3) = Ka'(sl) Kb(s) Kc (Sl+ 2 ) Kd.(s3) Ke (s+S2 +s3)
i= 1

for some N, then it can be realized exactly with at most 2N multipliers. If it can-

not be expressed in this form, then it is impossible to realize the system exactly

with a finite number of linear systems and multipliers.

Now, for the fourth-degree systems, the situation is slightly more compli-

cated. Consider the systems of Figs. XVII-5 and XVII-6. Each of them repre-

sents a fourth-degree system and is composed of seven linear systems and three

multipliers, but the two forms are essentially different; that is, no block diagram

manipulations can reduce one of these forms to the other. Hence, for fourth-

degree systems, we have two canonic forms. It is clear that any fourth-degree

system that can be realized with three or less multipliers can be arranged in

one of these two canonic forms. For example, the fourth-degree system shown
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(a)

(b)

Fig. XVII-5. First canonic form for the fourth-degree systems.

in Fig. XVII-7. can be placed in the second form.

The kernel and kernel transforms for the canonic form of Fig. XVII-5 are

given by

k 41 (T T Z T 3 4) = k 3 ) k (T 4 - 3 ) ke( 2) kd(T 3 -0 2- 3 ) kc (a) kb(Tz 2O 1- 2 3 )

ka (T1 1 2- 3 ) do- doda 3

K 4 1 (s 1 , s 2 , s 3 , s4) = Ka(sl) Kb(S2) Kc(sl+S2) Kd(S 3 ) Ke(sl+2+S3) Kf(s 4 ) Kg(sl+s 2 +s3+s 4 )

or

QPR No. 76



Fig. XVII-6.

Fig. XVII-7.

(b)

Second canonic form for the fourth-degree systems.

Fourth-degree system with two multipliers.
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k 4 1 ('l , T 3 4) = y ( 3 ) kg() kf(r 4 - 3) k3 (T 1 -o 3 , '2 ,  -r3- 3) do 3

K 4 1 (s 1 , s, s 3 , s 4 ) = K 3 (s 1 , s 2 , s3) Kf(s 4 ) Kg(s 1 +S2 +s 3 +S4)'

where k 3 (r 1 , T2' 3) is the kernel of the third-degree section within the fourth-degree

section.

For the canonic form of Fig. XVII-6, the kernel and kernel transform are given by

k 4 2 (' 1,) 2 , 3 , 4 ) = kg(a 3 ) k (a-2 ) k 1 ) a T1-0 1-3 ) k b(T2-l- 13 ) kd( 3-2-o 3 )

ke (T4 -2 -o3) do ldo 2 do 3

K 4 2 (s 1 , s 2 , s 3 , s4) = Ka(s 1 ) Kb(s 2 ) Kc(sl+s 2 ) Kd(S3 ) K(s 4 ) Kf(s 3 +s 4 ) K(sl+s 2+s 3 +s 4 )

or

k 4 2( 1 , r2  3  4) = kg(03) k 2 1 1'- 3, Tz2 - 3 ) k 2 2 ( 3 --3 , T34 - 3) dc3

K 4 2 (s 1 , s 2 , s 3 , s4) = K 2 1 (s 1 , s 2 ) K22(s 3 ,  (s 1 +S+S+s +s ) ,

where k 2 1 (T1 , T2 ) and k22 (T 3 , '4) represent the second-degree canonic sections within

the fourth-degree canonic section.

If a given fourth-degree system is characterized by a kernel transform

H4(s1, 2' 5s3 , s4), which can be expressed as

N 1  N 2

H (s1 S , 4) = K 4 1 (S1, S 3 , 4 ) = + K 4 2 ( s, S 3 , S 4) (5)

i= 1 i= 1

for some N 1 and N 2 , then the system can be realized exactly with at most 3(N 1 +N 2)

multipliers. If the kernel transform cannot be expressed in the form of (5), then it is

impossible to realize the system exactly with a finite number of multipliers.

For higher degree systems we shall have more canonic sections. A fifth-degree

system may be formed as the product of a fourth-degree and a first-degree system, and

the fourth-degree system may be obtained in either of the two forms given above, or we

may obtain the fifth-degree system as the product of a third-degree system and a second-

degree system. A sixth-degree system may be obtained as the product of a fifth-degree

system and a first-degree system, a fourth-degree system and a second-degree system,

or a third-degree system and a third-degree system, with all possible forms for each.
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3.1

S 4.4
2.2-- 7

3.2

(a) TREE FOR A FIFTH-DEGREE SYSTEM

2.2

3.2

3.1

2.2

5. 1

4.2

Although this nomenclature of canonic

forms becomes rapidly complex as the degree

of the system is increased, we may use the

concept of a tree to summarize the process

concisely, and to arrive at an expression for

the number of different canonic sections for

an nth-degree system. The trees for the

fifth-degree and the sixth-degree cases are

shown in Fig. XVII-8.

We now observe that the number of

different canonic sections, C(n), for an

n th-degree system is obtained from the

expression

- 6

3.3 -

(b) TREE FOR A SIXTH-DEGREE SYSTEM

Fig. XVII-8. Trees showing canonic
structures.

C(n) = C(n-k) C(k),

k= 1

n 2 2 (6)

C(1) = 1,

where [.] denotes the greatest integer function.

sections for n = 7 is given by (6) by

C(7) = C(6) C(1) + C(5) C(2) + C(4) C(3).

For example, the number of canonic

From Fig. XVII-8, or repeated use of (6), we have C(6) = 6, C(5) = 3, C(4) = 2, and

C(3) = C(2) = C(1) = 1, and hence, from (7), C(7) = 11. For n = 8, we have

C(8) = C(7) C(1) + C(6) C(2) + C(5) C(3) + C(4) C(4) = 24.

The tree corresponding to n = 8 is shown in Fig. XVII-9.

Thus we see that by forming the tree, and following each path in the tree, we may

obtain quickly the form in which we must be able to express the kernel transform of an

n th-degree system in order that the system be realizable exactly by a finite number of

linear systems and multipliers. For higher degree systems the expressions will not

be simple, but we have exhibited a procedure for obtaining them with a minimum of

effort.

Hence, given the kernel transform of an nth-degree system, we may test that trans-

form to determine whether or not it is realizable exactly with a finite number of linear

systems and multipliers.
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3.1

2 .2  5.1

3.2 6.1

3.1 7.1

2.2 34.2
3.3

3.12.2 2 5.2
4.3 -

3.1 2.2

2.2 I 3.2 5.1 -

3.1

4.2 -

2.2 14.5.3
3.2

3.1 3.1

2.2 I1_L 2 . 2

Fig. XVII-9. Tree for an eighth-degree system.

It should be noted that, in any particular case, it is not necessary to perform the

test of a kernel for exact realizability in one step. One proceeds by means of a sequence

of simpler tests from the higher degree side of the tree through the lower degree

branches as far as possible. Following any path completely through the tree indi-

cates that exact synthesis with linear systems and multipliers is possible; if it is

impossible to follow any path completely through the tree, the synthesis is not pos-

sible. Even when the exact synthesis is not found, proceeding as far as possible

through the tree reduces the synthesis problem from the synthesis of one higher

degree kernel to the synthesis of several lower degree kernels, which constitutes

a significant reduction.

The procedures discussed above are illustrated by two examples.
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Example 1

Consider the kernel transform

H4(s1, s 2 , s 3 , s 4 ) = s4 (S2S3S44s+2SlsS2S 3 + s s 2 s 4 + s s 3 s 4 + s s 3 s 4

+2s s2+2s s3+2s ss4+s s +s s 4
+2slIS2 + s3 +2s2s3 +s1 S4 s2 s4 + 3s4

+ 2s1 + 2s2 + 2s 3 + s 4 + 2). (8)

If this kernel is to be realized exactly with a finite number of linear systems and multi-

pliers, we must be able to express it in the form of (5). To determine if this is possible,

we first try to express (8) as

H4(sl , s2 s 3 , s4) = F(s 1 , s 2 , s3) G(s 4 ) H(s 1 +s +S3+s 4 );

this corresponds to one of the branches in the tree for a fourth-degree system. We

note that it is only necessary to consider the denominator, which we denote by

D(s 1 , s 2 , s 3 , s4). We set the variables equal to zero three at a time to obtain

D(0, 0, 0, s 4 ) = s 4 + 2 (9)

D(0, 0, s 3 , 0) = 2s 3 + 2 (10)

D(O, s2, 0, 0) = 2s 2 + 2 (11)

D(s 1 , 0, 0, 0) = 2s1 + 2. (12)

Since (9)-(12) have no common factor other than unity, the only possible H( ) is unity.

Also, the only possible G(s 4 ), from (9), is G(s 4 ) = (s4+2). To see if this is indeed a

factor, we divide D(s I , s 2 , s 3 , s4) by (s4+2) and find

CUBER
s+l

s+2

Fig. XVII-10. System with the kernel of Example 1.
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D(s 1 , s 2 , s 3 , s 4 ) = (s 4 +2)(s 1 S 2S 3 +s 1 s 9 +s 1 s 3 +s 2 s 3 + s1 +s 2 +s 3 + 1). (13)

Now, with the help of(10)-(12), we recognize the second factor in(13) as (sl+)(s+1)(s3+l),

and thus we have

H (s ts?* s s 4 s 4 4
H4(S' 2' s 3 ' s 4 ) = (s4 2)(l+1)(s2+)(s 3+1)

Hence this kernel can be synthesized as shown in Fig. XVII-10.

Example 2

Consider the kernel transform given by

S ( 2 2 2 2 22 2 2
H4(s s 2 s s ( 24 s1 + s2) s 1 s 2 s 3 s 4 + s s 2 s3s+sss3s4 +s 2ss4 , , 4 1SS3S 43 1 2 3 4 1 34 1 2 3 4

2 2 2 2
+6s s 2S3S 4 + 6s 1 s2ss4 +7s12s3s +7sss2s34

1 12

2 2 2 2 22 22 22
+2s3 1 24 +1s223 S1S2S4 213s4

2 2 22 2 2
+2s s s + s2 s + s 3 s 4 + 42 s s s s134 234 234 234

2 2 2 2
+ 2ls 1 s 2 s 3 + 6s1 24 + 14s 1 23 + 6s1s2s4

2 2 2 2
+ 10s s 23 +s s ss 4 + 145ss3s 4 + 7s2s3s 4

2 2 2 2
+ 8s s3S + 8s1 s s + 5s s s +5s2S s

22 22 22 22
+4s 1 s3 +2s 1 s 4 + 2s 2 s 3 +s 2 s4 + 60s 1s 2 s 3

2
+36s1l2s4 + 56s1s3S4 + 35s 2 s 3 s 4 + 8s1s2

2 2 2 2 2
+8s s +20s s + 12s s 4+10s2 s + 6s2 s

2 2 2 2 2
+ 16s1s3 s+8s1s4+ 10s 2 s 3 + 5s 2 s 4 + 6s3 s 4

+6s3s" +48s s 2 +80s s3 +48s s 4

2 2
+ 50s 2 s 3 + 30s 2 s 4 +42 s 3 s 4 + 16s +8s 2

+ 12s2 +6s +64sl +40s2 +60s3+ 36s 4 + 48 ) . (14)
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Again, we try to put the denominator D(s I , s 2 , s 3 , s 4 ) into a form corresponding to

the 3. 1 branch of the fourth-degree tree. We find

D(O, 0, 0, s 4 ) = 36s4 + 48 = 12(3s 4 +4) (15)

2
D(O, , s3, ) = 12s3 + 60s3 + 48 = 12(s3 + 4)(s3 + 1) (16)3) 3 3 3 (s3 3

2
D(O, s 2 , 0, 0) = 8s 2 + 40s 2 + 48 = 8(s 2 + 3)(s 2 + 2) (17)

2
D(s1 , 0, 0, 0) = 16s1 + 64s1 + 48 = 16(s + 3)(s + 1). (18)

Examination of (15)-(18) shows that no common factor other than 4 exists. Hence no

factor of the form H(s 1 +s 2 +s 3 +s 4 ) can exist other than H( .) = 4. We next attempt

to find a factor that is a function of only one of the variables sl, s 2, s 3 , s 4 . Division of

D(s 1 , s2' s 3 , s4) by each of (15)-(18) shows that such a factor cannot exist. We cannot

follow the 3 - 1 branch of the tree.

We then attempt to follow the 2 * 2 branch, or to express D(s 1 , s2, s 3 , s4) as

D(s 1 , s 2 , s 3 , s4) = H2 (s 1 , s 2 ) K2 (s 3 , s4)

or as a similar expression with s1 , s 2 s3' s4 permuted; we have already found

that no nontrivial factor of the form H(sl+s 2 +s 3 +s4) can be present. Hence we

write

D(0, 0, s3,4) = 6 s3s 4 +s 3 s +2s3+s4+7s 3 s 4 +10s 3 + 6s 4 +8 . (19)

If a factor K2 (s 3 , s 4 ) exists, it must be contained in (19). Division of D(s 1 , s 2 , s 3 , s4) by

(19) is successful, and yields a second factor; therefore we have reduced (14)

to

s1 +s N
114(S1 S2' 3' s4) 2 2 2 2

S1s 2 + s1s2 + 2s 1 + s 2 + 6s 1 s 2 + 8s + 8s 2 + 6

1
2 2 2 2

s3s 4 + s3s4 + 2s 3 + s 4 + 7s3s 4 + 10s 3 + 6s 4 + 8

We have now reduced the problem to synthesis of two second-degree systems.

Note that we are not yet sure whether or not either of these second-degree
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Fig. XVII-11. Realization of the kernel of Example 2.

systems is exactly realizable with a finite number of linear systems and multi-

pliers. We may, however, examine each second-degree system separately; using

the techniques given by Schetzen.1 We find that we may realize each of them,

with the system whose kernel transform is given by (14); the synthesis is shown

in Fig. XVII-11.

A. M. Bush

1. M. Schetzen, Synthesis of a class of nonlinear systems, Quarterly Progress
Report No. 68, Research Laboratory of Electronics, M.I.T., January 15, 1964,
pp. 122-130.

B. TIME-DOMAIN SYNTHESIS TECHNIQUE FOR NONLINEAR SYSTEMS

An important feature of the convolution or superposition integral in linear system

theory is the possibility of the use of impulse-train techniques. The input-output relation

for a linear time-invariant system may be given by the convolution integral (1), where

s(t) is the system input, y(t) is the output, and h(T) is the unit impulse response, or

kernel, of the system.

y(t) = h(T) x(t-T) dT. (1)

A generalized expression is

y(m+k)(t) = +c_ h(m)(T) x(k) (t-T) dT, (2)

where m and n are positive or negative integers, with f(k)(x) representing the kt h deriv-

ative of f(x) if k is positive and the kt h successive integration, as in (3), when k is

negative.
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f(-1(x) = x f(y) dy. (3)
o0o

If some derivative of h( ) or x( ) yields only impulses, evaluation of (2) becomes

very simple. This technique is useful in the evaluation of (1), in finding the transform

of h( ), and in finding approximants to h("); thus it is extremely useful in the synthesis

of a linear system when h(. ) is given.

We shall demonstrate the use of impulse-train techniques for nonlinear systems.

Consider a nonlinear system for which the input-output relation (4) applies:

+00 

+00

y(t) 0= ... hn(T 1 .... Tn ) x(t-T 1) ... x(t-T n) dT 1 . . dT , (4)

where x(t) is the input, y(t) the output, and hn (T 1 . T n) the kernel of the system. This

relation may be generalized just as in the linear case:

(m+k) h(m)(T x(k) (t-T x(k)-T dT dT
y (t) = ... ' n ) x(t- 1) ... x (t-) d .. dTn

(5)

where the superscripts on y( • ) and x( ) have the same significance as in (2), and we

define

nm
(m) nm hn(T 1 '... ' T n)h(m)(T

n 1T ".'Tn) m m

n 1

for m positive. For m = -1, we define

h(-1) 1' " " " ' n n hn ..... n ) dTl . d . (6)
nn 0 Y00

For m any negative integer, hn (m)(T1 " ., n ) is found by repeated application of (6).

Although (5) is true for any n, it appears to be most useful for n = 2, since for this

case we may often use graphical techniques. Examples of the use of (5) for the calcula-

tion of kernel transforms and the synthesis of a given kernel for second-degree systems

will be given.

Example 1

Consider the second-degree kernel given by

h2 (TI, T2 ) = U_1 (T 1) U_1(1-T) U_ 1 (T2 ) U_ 1 (1-T 2 ) (7)
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(a)
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T 2  L DELAY -1
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2T2

Ti (c) (b)

2

12Fig. XVII-12. The kernel of Example 1. Fig. XVII-13. Realization of of
Example 1.

QPR No. 76 181



(XVII. STATISTICAL COMMUNICATION THEORY)

and sketched in Fig. XVII-12a. Form the partial derivatives with respect to T1 and then

with respect to T 2 . This may be accomplished either graphically or analytically, with

the result

Shh T [u (T )-u (1-T)] U_(T Z ) U_ (1-T)

8h 2

= u ( ) (T 2 ) U o - u ( 1) u (1- ) + u (1-T U (1- - (1- ) (
a21 o )u 01 o 2 o o000 1 2

(8)

These partial derivatives are sketched in Fig. XVII-12b and 12c. A type of singular-

ity which we shall call an impulsive fence occurs in the partial with respect to T 1
(Fig. XVII-12b).

The four impulses of the second partial can be realized as shown in Fig. XVII-13a,

and combined as a sum to give the system of Fig. XVII-13b, which is a realization of

the second partial derivative. Simplification yields the equivalent system shown in

Fig. XVII-14. Precascading an ideal integrator, as in Fig. XVII-15, yields a system

that realizes the original kernel. Note that only one integrator is required, although

two differentiations were performed. Simplification yields the system of Fig. XVII-16.

DELAY -1

sq

82ha h 2
Fig. XVII-14. Simplified realization of .T

Fig. XVII-15. Realization of the kernel h 2 (T 1 , T2 ) of Example 1.

k(t) _ sq

Fig. XVII-16. Simplified realization of the kernel of
Example 1, with k(t) = u_ 1 (t) ul(-t).
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Of course, in this simple example, we could have found the system of Fig. XVII-16

directly from the expression for the kernel (7).

We may also use this technique to obtain the kernel transform, as in (9) and (10),

since the transforms of the components of the singular kernel of Fig. XVII- 12c can be

written by inspection. Factoring the transform expression of (10) to separate variables,

we obtain the transform expression (11). The system of Fig. XVII-16 is recognizable

from this form also.

82h -s -s -s -s
- 1 +e e -e -e (9)

2 1

-sl -s2 -S1 -s
h 1+e e -e -e (10)

2 s s2

H(sits -e - - e s 2

, ) = s s . (11)

Example 2

Consider the second-degree system characterized by

h2 (T1', 2 ) = (--T 1 -T 2) U_ 1 (1- 1-T 2) U_I (TI) U_1 ( 2) (12)

and shown in Fig. XVII-17a. Partial differentiation of this kernel yields

ah
aT -u- (1-72) - 1(T 1) u 1( 2) + (1-TZ) U- 1 (1-) U- 1(-r 2 ) Uo(T 1)

1

82h
S2 u(1- -T 2 ) UI(T 1 ) U_(T 2 ) - u _(1-T 1) U 1 (1 ) UO(T 2 )

8-r2 1 1 1 1

U_ 1 (1-T 2 ) U_I(T 2 ) UO (T1) + U(T 1 ) U(T 2). (13)

These partial derivatives are sketched in Fig. XVII-17b and 17c.

Let us find the transform of the kernel (12). We shall look at the derivative (13),

taking each term separately and summing. The transform of the second partial deriva-

tive is

-s -s -s -s

I-e 1 -e e -e
1- +

s 1  s2 s2 -s1

Simplification yields
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Fig. XVII-17. The kernel of Example 2.
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2 _-s -s2 1-s1-e-s)s I  - s 2 - e - s( - sI - )
s1s (sz-S 1)

as the transform of the second partial derivative, and hence we have

s 1- s - e-s - s2 1 -s 1 e-s)

HZ(S1' s2 2 2
1s2(S2-s1)

Some important observations can be made from these examples. From the kernel

transforms of Example 1 and Example 2, we can see that the first kernel is of the class

that can be realized exactly with a finite number of linear systems and multipliers, while

the kernel of the second example cannot.

We might attempt to approximate an arbitrary kernel h 2 (T I , T2) with planes, so that

we could differentiate with respect to 7 and T7 to obtain a new function consisting of

impulses and impulsive fences; if we could find a system that realized this singular

kernel, then the original kernel would be

realized by this system cascaded after an

ideal integrator. Manipulation of the

resulting system as in Example 1 might

lead to a quite simple realization.

The second example shows, however,
Fig. XVII-18. A system whose kernel is

that not any impulsive fence is realizable
an impulsive function.

with a finite number of multipliers and

linear systems. In fact, a little reflection shows that the only impulsive fences that can

be realized with one multiplier and linear systems are those lying along lines inter-

secting the T 1 or T 2 axes at a 45" angle, or along lines parallel to the axes. Such an

impulsive fence is

f(T 1 , T2) = u (T 1-T 2 ) u. 1( 1) U_ 1 (T2 )

which has the transform

1
2F(s1 ,  S + s 2

This is realizable as shown in Fig. XVII-18.

A unit impulsive fence passing through the origin of the T1 ' T 2 plane at any other

angle will not be realizable with a finite number of linear systems and multipliers. For

example,

g(T 1 , T2 ) = u (T 1-- aT7) U_ 1(T1) U_ 1(T 2 )
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has the transform

1
G(s s + as 1

Thus if we wish to approximate a kernel with planes, in an effort to find a realization

for the system from a finite number of linear systems and multipliers, then we must

choose the approximating planes so that differentiation with respect to 71 and T 2 yields

a sum of impulses and impulsive fences, with the impulsive fences occurring only along

the 45 lines or parallel to the axes. Convenient methods for finding such approximants

are under investigation.

A. M. Bush

References
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C. MODEL FOR MAGNETIC TAPE NOISE

1. Introduction

Magnetic tape noise is frequently represented as the output of a linear filter excited

by a train of positive and negative impulses having random areas and random interarrival

times. The probability that any impulse is positive or negative is a function of the mag-

netic state of the tape. For the erased state, the probability of being either positive or

negative is one-half. For positive saturation, the probability is one for a positive

impulse, and zero for a negative impulse.

This model is intuitively reasonable, since the magnetic coating of a recording tape

is composed of small, acicular, ferrite particles (magnetic dipoles) fixed in a plastic

binder. The direction of the individual magnetic dipole moments determine whether the

corresponding voltage pulse produced by the reproducing head is positive or negative.

And the direction of the individual dipoles is a function of the magnetic state of the tape

which is determined by the external magnetizing field and the interaction of the particles.

The autocorrelation function and power density spectrum of a train of impulses with

random areas and random interarrival timesl are given by

R(T) = Nm u o ( r) + mkmk+j ( r) + (1)

j= 1 k k

S() = N m + 2Re mkmk+j M (wj. (2)

j= 1
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The average number of impulses per second is N, mk is the area of the kt h impulse,

m = E[m2 ] and mkmk+j = E[mkmk+j], Pj (T) is the probability that the waiting time,

th
r, to the j impulse is T, and M (w) is the characteristic function of P j(T).

In this report we wish to show the change in the power density spectrum with vari-

ations in the average value of the impulse train. We shall do this for two conditions;

first, with the signs of the impulses statistically independent; second, when they are

nonindependent and the dependence can be represented by a first-order Markov process.

Rewriting (1) and (2) as functions of the signs of the impulses gives

00

R(T) = N UO(T) + Im S ksk+j (P(T) + (-T

j=1-2-
S() = Nm + 2 Im12 Re sksk+j M() ,

j=l

where s k is the sign of the kt h impulse, and Sksk+j = E[sksk+j]. We have also assumed

that the magnitudes of the kt h and k+j t h impulses are statistically independent.

The waiting-time probabilities between adjacent impulses are assumed to be inde-

pendent and exponential, this corresponds to a Poisson distribution.

2. Case I: Impulse Signs Statistically Independent

When the signs of the k t h and k+j t h impulses are statistically

Sksk+j = E[sksk+j] = E[sk] E[sk+j]"

independent,

Assuming a stationary impulse train gives

skSk+j = E 2 [s]

and

E[s] = P(s = +1) - P(s = -1).

Thus the autocorrelation function is

2 2-m zu (T) + m Z (I

R(T) =

12 (P 2

j= 1

+ -P )z
+ -

j= 1

j - 1

- jl
N

(j-1) !
-NT

e

j-1
(-NT)

eN - e
(j-1)!

T> 0

T<0
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which reduces to

R(T) = Im2u () + N- 2(P+_ P_)2 (9)

The power density spectrum is

S() =N m 2NrZ(P - ) u( ) (10)

where P+ = P(s = +1), and P_ = P(s = -1).

The effect on this power density spectrum as the average value of the impulse train
changes is limited to a variation in the area of the impulse at the origin. As shown in

-2 -2 2
N Iml (P +-P-) Ho

Nm
2

Fig. XVII-19. Power density spectrum of a series of independent impulses.

Fig. XVII-19, the impulse is zero for zero average value (P+= P = ) and has its max-
imum value when (P+ = 1, P = 0) or (P+ = 0, P_ = 1).

3. Case 2: Impulse Signs Nonindependent

a. Unspecified Dependence

When the sign of the kt h and k+j t h impulses are not statistically independent, the
expectation of their product can be written in the following general form.

Sksk+j = P(sk=+l, sk+j= +1) + P(sk= 1, sk+j=-l)

-P(sk= +1,sk+j =-1) - P(sk= -l, k+j=+l1) (11)

=P(sk= +1)[P(sk+j= +1(sk= +1)-P(sk+j =-1 sk= +1)]

+P(sk= -1)[P(sk+j= -1 s k = - 1) - P(sk+j = 1 lk= -1)]. (12)

QPR No. 76 188



(XVII. STATISTICAL COMMUNICATION THEORY)

This can be written more compactly

s = ( ) P PP +P P - (, (13)k sk+j +\P + + - _ - +13)

(j) .thwhere, for example, P is the conditional probability that the j impulse after a
+-

given positive impulse will be negative. These conditional probabilities must be deter-

mined before the power density spectrum for the dependent case can be evaluated.

b. Markov Dependence

The unconditional probabilities in Eq. 13 could be evaluated if the relation between

the signs of the impulses were known (or if the interaction between the magnetic dipoles

were known in the magnetic tape noise problem). Since this relation is not known, we

assume initially that the sign of the kth impulse is only affected by the sign of the adja-

cent impulse. Then the impulse sign dependence can be modeled by a first-order Markov

process.

The Markov transition matrix giving the four conditional probabilities between adja-

cent impulses is

P+ P+_ 1 -P+_ P+_

pM) = (14)

-+ P_ -+ 1-P

The conditional probabilities for impulses separated by j-1 impulses are given by

the jth transition matrix

_(+) = P_+ P +_P(15)
- + _ _P_ + P

Substituting these conditional probabilities in Eq. 13 gives

(P + -P ) (P+P +P P +)
ss= (P-P) +2 -(1-P -P ). (16)Sk k+j  (P+ ) (_+p) P +P +- -+ (16)

Since the impulse train is stationary,

P P
-+ +-P P =

+ P +P - P +P
+- -+ +- -+

and Eq. 16 can then be simplified to
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(P + P+- -+

The autocorrelation function is thus

R(T) = u (T) + N m (P - P_)

+ 4 N Iml+4NmI (1-P+ -P +) e
(P ++ P_+)

and the power density spectrum is

S(w) =N m2 + N m (p+ P_) u ()

: PP
+8 Im12 +- -+ 3 (1-P+-P_+)

(P + P +) +

This power density spectrum is plotted in Fig. XV

average value is zero and for various values of P+

P =P -
+- -+ 4 - 2

Iml

P =P I+- -+ 2

Nm2

-N T (P ++ P +)-NIT(P+_+P_

N(P +P z 2]

II-2O for the case in which the

and P consistent with this
- -

3 4 5

Fig. XVII-20. Power density spectrum of a series of dependent impulses.

average value. The correlation between the impulses changes the shape of the power

density spectrum appreciably. As can be seen, when P _ = P_+ = 1, the low-frequency

power in the impulse train is small, since the impulses are alternating in sign. As
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0.2 0.4 0.6 0.8 1.0 +-

P+ = 0.1

P = 0.9

0.2 c

SP+ = 0.2
10 P =0.8

0.4
0 P = 0.3

P = 0.7

0.6

P+ =0.4

P = 0.6
0.8

1.0

P-+ P= 0.9 P= 0.8 P 
=

0.7 P 
= 0 . 6 P+ 0.5

P =0.1 P =0.2 P =0.3 P = 0.4 P =0.5

Fig. XVII-21. Contour plot of M.

P and P decrease, the low-frequency power increases and the half-power point

shifts to lower frequencies, since the probability of longer strings of impulses with the

same sign is increasing.

A fuller picture of the manner in which S(w) varies with P _, P_ + and the average

value is given in Fig. XVII-21. This is a contour plot of M as a function of P+_ and

P_ +, where

+- -+ (20)
M = 8 (- P+ -P_ +) (20)

(P + p_ +)

and M is related to S(w) by

=72 2 m]2 1 P z
S(0)_- 2  m 2 (p+ N m +--- (21)

m

Overlaid on this plot are lines relating P _ and P_ + to the average value of the impulse

train. The straight line from P = 1 to P_ += 1 corresponds to the statistically inde-

pendent case.
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4. Application to the Problem of Magnetic Tape Noise

A train of impulses with a variable average value is often used to model the source
of magnetic tape noise. If the power density spectrum of this impulse train is known,
then the power density spectrum of the noise at the reproducing head output is given by

S (w) = IF(w)! 2 S(),

where F(w) is the frequency response of the reproduction head.

A characteristic of F(w) is that F(0) = 0. (An obvious consequence of the fact that
the output voltage is related to the time derivative of the flux passing through the repro-
duction head.)

In previous papers2,3 in which the impulse train model was used, it has been
assumed that the impulses are Poisson-distributed and statistically independent. The
power density spectrum of such an impulse train is given in Eq. 10. From this equa-
tion and the fact that F(0) = 0, we can say that the output-noise power density spectrum
does not change with the average magnetization. Experimentally, we know that the noise
increases with magnetization. This proves that the impulse-train model with the
assumptions above is invalid.

From Eq. 19 we see that it would be possible to account for the increase in noise with
magnetization with the impulse-train model and a Poisson distribution of impulses if
there were correlation between the impulses. (This also makes good sense physically,
since the magnetic particles interact.) In order to satisfactorily prove that correlation
is the cause of the noise, however, the Markov model must be justified and the changes
in P+ _ and P_ + as the magnetization varies must be determined.

R. F. Bauer
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D. CORRELATION FUNCTIONS OF QUANTIZED GAUSSIAN SIGNALS

Considerable attention has recently been given to the problem of determining the
parameters that define optimum quantizers. 1 ' 2 Many times in addition to determining
the optimum quantizer parameters, it is desirable to determine the autocorrelation
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e(t)= x(t) -y(t)

+ ERROR

Fig. XVII-22. Diagram indicating notation.

function of the quantizer-output signal and the quantizer-error signal (see Fig. XVII-22)

in terms of the autocorrelation function of the quantizer-input signal and the parameters

specifying the quantizer. In this report we shall develop expressions for the output and

error autocorrelation functions when the quantizer-input signal is a stationary, bivariate

normal process.

We begin by considering the autocorrelation function of the quantizer-output signal

y(t). By definition, this autocorrelation function 3 is

(T) = lim -L y(t) y(t+T) dt. (1)
T

"0 0  
T

As y(t) is a stationary process, we are able to write (1) on an ensemble basis 4 as

(yy(T) =' dl d 2 [h1 2 Py(7 1 2'; T)], (2)

where 1l and n2 correspond to observation of the signal y(t) at times t and (t+T),

respectively.

Referring to the quantizer block diagram of Fig. XVII-22, we see that

y(t) = Q[x(t)], (3)

where Q is a single-valued function of its argument (see Fig. XVII-23). Thus, with

reference to Eqs. 2 and 3, we have for the output autocorrelation function

00oo o0o4 yy (T) = d 1 5' d 2{Q[ ]Q2 ]px( 1 2; T)}. (4)

As we have indicated, the quantizer-input signal x(t) is assumed to be a bivariate

normal process. Such a process has the amplitude probability density 5' 6

2 2 1/2 2 2
2[ (0)- (7) 2 (0)-4 ()
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YN-1

x1  x2  x3

I [_ -- 

Fig. XVII-23.

Q [x]

XNI 1

Y3

Q Ex] = y xi <x < xi+1

i = 1,2, ... , N-1

Quantizer transfer characteristic. The x. are called the1
transition values, and the y. representation values.

where v is the mean value of x(t). For purposes of this report we restrict ourselves

to input signals satisfying the two constraints

xx(0) 1 .

These restrictions will not, as a rule, reduce the generality of the results that we shall

obtain.

Combining Eqs. 4, 5, and 6, we have

yy (T) =S d 1 __

2 -2 2  (T)
X exp - 21.(7)

2L L ( 2 1-< (j)
xx xx

From Fig. XVII-23 we see that the quantizer characteristic Q[x] is specified by the (N-l)

equations
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O[x] = yi+1 x x < xi+ 1  i = 1, 2, . .. N-1. (8)

Here, x0 equals X the greatest lower bound to the quantizer-input signal and xN equals

X , the least upper bound to the input signal. Substituting Eq. 8 in Eq. 7, we have
u

N-1 N-1
1 i+1 k+l

2 1 i (T)]'/ i=0 k=0 x. xk

1 xx

: ~211--x (T)

While Eq. 9 is an acceptable form for yy(T), we can obtain a different form of this

equation which will yield considerably more insight into the composition of yy(T) by

expanding the exponential in an infinite series. In order to do this, we first multiply

the exponential term by

exp 2] exp- 1 2

Upon multiplication and collection of terms, the exponential term becomes

Fli 2 xx l i - 0) T)

exp exp - 2 (10)

S xx

The first of these two terms can be written in the form of an infinite series through the

use of Mehler's formula7:

[ J/2 0 Z2H (T ) -2 2+ 2) (T)
2(T) 1 Hm T xx 1 2 xx

m= 0 21- (T)

(11)

The Hermite polynomials H (x) are defined by

dm -x 2 /2 ()m -x 2/2- e = (-1 H (x) e (12)m mdx m

Making appropriate substitutions of Eqs. 10 and 11 in (9), we obtain
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N-1
1

yy 2iT
i=0

X i+ Yk+{ m=O
m= 0

1 H ( ) H (Z )m! m 1 m 2

After rearranging the terms, (13) becomes

00

yy (T)=
m= 0O

mx (T) X
xx

N-1
1 k

(2 rm!)/2 k= 0

N-1
1

1!) i=0

k+ xk+
xk

y xi+1
Yi+l x i + l

x.
1

2
- /2

d 2 e2

00

yy (T)
m=O

where

1
a =

m 1/2
(2m!)

2m
a m (T),

m xx

N-l

i=0

(15)

Yi+l x i +
X.

1

d e /2 H (),m (16)

since the two terms enclosed by braces in Eq. 10 are identical.

By using the Wiener theorem,8 we find that the power density spectrum of the

quantizer-output signal is

00

yy( =
m= 0

2 *m
a 2 ' (w),m xx

where D (w) is the power density spectrum of
XX thcates the m convolution of 'x (o) with itself.xx

the quantizer input signal.

5 , the term for m=O, is
xx

S*m (o) indi-
xx

x (w0)= u (W),
xx 0

where u (w) is the unit impulse function.

error signal,

We now turn our attention to the quantizer-
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x 1i+1
k= 0 x i

d I S Xk+l

xk

m(7T X exp -xx

d e I

H(z)

(13)

H ( 1)

(14)

(17)

(18)
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e(t) = x(t) - y(t). (19)

From Eq. 19 we see that the autocorrelation function of the error is9

4ee (T) = xx(T) + yy(T)- xy(T) - yx(T)

(20)4 ee (T)= xx(T) + yy(T)- y(T)- xy(-T),

since yx(T) = 4xy(-T).

In order to evaluate (2), we must first evaluate 4 y(T).

xy(T) xx(T),

where

10Bussgang has

da {Q[f] e- 2/2} (22)

if x(t) is a sample function of a bivariate normal process, and Q is a single-valued

function of its argument. This being the case in our problem, we proceed by evaluating

p for this particular device. Substitution of the device characteristic yields

N-l

= - Yi+ 1
i=0

xi+1  
e 2Z / 2 d .

x.
1

(23)

Comparing (23) with (16) for the case in which m=1 and realizing that H1 () = 5, we see

that

=a 1 . (24)

Substituting these results in Eq. 20, we have for ee(T)

ee(T) = xx (T) +

since xx (T) = 4xx(-T).XX XX

a2 m (T) - 2a lx(T),
m xx 1 xx

m=0

After collecting terms, (25) becomes

ee ( T ) = a2 + (1-a )2 x(T) +
ee 0 xx

Applying the Wiener theorem, we have for the power density spectrum of the
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(21)

(25)

2m
a 2 m (T).

m xx
m=2

(26)

1 00

P ;~-s-oo
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quantizatinn error

S ( ) = a oU () + (1-a )2 (W) + a m (). (27)
ee 0 0 xx m xx

m=2

It should be noted that the parameters denoted by am m = 0, 1, 2, ... in the expres-

sions for the output and error autocorrelation functions and power density spectrum con-

tain all the information concerning the specification of the quantizer. Further, the am
are not functions of the autocorrelation function of the input signal. Thus, the a canm
be regarded as a set of parameters characterizing the quantizer from the autocorrela-

tion or power-density points of view.

J. D. Bruce
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E. AN APPLICATION OF VOLTERRA FUNCTIONAL ANALYSIS TO

SHUNT-WOUND COMMUTATOR MACHINES

This report presents a solution to the nonlinear differential equations of a voltage-

excited, shunt-wound commutator machine by an application of Volterra functional analy-

sis. A Volterra series expression for the output speed of this machine, in terms of its

input voltage, is derived. For a class of bounded inputs, the convergence of this series

is proved. Bounds are given on the errors introduced if the higher order terms of this

series are neglected.
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1. Model of a Shunt-Wound Commutator Machine

Figure XVII-24 is a schematic model of a system that consists of a voltage-excited,

i(t) (t)

) v (t) L Ra , La , G A,J

FIELD ARMATURE LOAD

Fig. XVII-24. Voltage-excited shunt-wound commutator machine
driving an inertial and frictional load.

shunt-wound, commutator machine and its load. The load is inertial and frictional. The

parameters of this systeml are:

v(t), excitation voltage (input)

w(t), rotation speed of the machine (output)

ia(t), armature current

i f(t), field current

R , series resistance of the armature and brushes

Rf, resistance of the field

La ,  self-inductance of the armature

Lf, self-inductance of the field

G, speed coefficient of the machine

A, load coefficient of torque drag per rotation speed

J, moment of inertia of the load.

It will be assumed that R a , Rf, L a , Lf, G, A, and J are constants (that is, coil

saturation and/or variable loading will not be considered). With these restrictions, the

system's equations of motion2 are:

v(t) = (Rf+Lf -) if(t) (1)
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v(t) = (Ra+La d ia(t) + Gw(t) if(t) (2)

Gia(t) if(f) = (A+J o(t). (3)

For a given input, v(t), Eqs. 1-3 is a set of three simultaneous equations in three

unknowns if(t), ia(t), and o(t). As a first step toward solving these equations, Eqs. 1

and 2 will be solved for if(t) and ia(t) in terms of v(t) and w(t). These results will then

be used to eliminate these variables from Eq. 3 in order to obtain one equation in one

unknown. The last equation in input and output will then be used to find a Volterra series

solution for w(t) in terms of v(t).

2. Input-Output Equation

Equation 1 is linear and may be solved by standard techniques. The explicit solution

for i f(t) in terms of v(t) is

if(t) = hf(T) v(t-T) dT, (4)
-co

where

hf(T) = I(T) 1 exp -fT , (5)ff f

and 4(T) is the unit step.

Equation 2 is nonlinear because of the w(t) if(t) product. If [v(t) - G(t) if(t)] is treated

as if it were one variable, then Eq. 2 is linear and can be solved for ia(t) in terms of

the variable

ia(t) =5 h (T)[v(t-T)-Gco(t-T) if(t-T)] dT, (6)
-o

where

ha(T) = (T) exp [- -r] . (7)
a _a

The dependence in Eq. 6 of ia(t) upon if(t) can be eliminated by substituting the

expression for if(t) given by Eq. 4. The result is

ia(t) = ha('I) v(t-T 1 ) dT1 - G h'hf (T1) ha(T2 ) v(t- 1-T 2 ) (t-r 2 ) dTldT 2.

(8)

If [ia (t) if(t)] is treated as if it were one variable, then Eq. 3 is linear and can be
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solved for w(t) in terms of this variable. The result is

o(t) = h (T) [ia(t-T )if(t-T)] dT, (9)

where

G -h (T) = ±.(T) exp - . (10)

If the expressions for if(t) and ia(t) given by Eqs. 4 and 8 are used to eliminate these

variables from Eq. 9, the result is an equation in only the input, v(t), and the output, W(t).
That input-output equation is

w(t) = . .. h (r 1) ha( 2) h o( 3) v(t---- 3 ) v(t- T2 -T 3 ) dT 1 ... dT 3

- G y ... h a( h(r 2 ) h f(T3 ) h (, 4 ) v(t- 1 -T 2 - 4 ) v(t- 3 -T 4)

* w(t-T 2 -T 4 ) dT 1 ... dT 4  (11)

If the input v(t) is bounded,

R
Iv(t)j <-J NiA , for all t, (12)

then the solutions of Eq. 11 are unique and time-invariant.

3. Output Speed as a Functional of the Input Voltage

If the output, w(t), is an analytical functional of the input, v(t), (that is, its Volterra

series representation converges), then because it is time-invariant 3 we may write:

00

w(t) = + . " ( T  " ' Tn) v(t-r ) .... v(t-Tn) dT1 . . dTn, (14)

n= 1

where 0o is a constant, and 0 n(', , " n ) is a function of n variables.

In order to evaluate the Volterra kernels, 2, 01 . .. , we substitute Eq. 14 in Eq. 11.

With an appropriate change of dummy variables, the result is

oo

S+ 00 ... ( ( l...n T ) V(t-T) ... v(t-rT) d 1 ... dt S h(1
o n n n 1 n -

n= 1

Shf(1l-1) ha2- 1) dS1 - GOo S - h a( i l )1 2 ) h f(T l- l - 2 ) h f(T 2 - 2 ) d ( d (2
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* v(t-T 1) V(t-r 2 ) dT 1dT2 + I .. - G ha1) h ( 2 ) h f(T 1 2) h f(TmT 2m=3 -00 -00

m-2 ( - 1 ... , 7 - I) d :d 2  v(t-T ) ... v(t-T) dr ... dT . (15)

Equation 15 must hold for all v(t) for which the Volterra series, Eq. 14, converges.

This can be true if and only if like order integrations of v(t) on either side of Eq. 15 are

equal. That is,

~2 = 0 (16)

0

s Tl(T) v(t- 1 ) dT 1 = 0 (17)

02 (T1 , T2) v(t-T 1 ) v(t-T 2 ) dTr1 dT2 = 'h ( 1) hf( 1- 1 ) ha(T2- 1) d

v(t-T 1) v(t- 2) dT 1 dT 2  (18)

S n(T l T n ) V(t-- 1 )... v(t-Tn) d1 ... drTn = Y- G ha( l) h (J 2)

hf(Tn-l- 12)h(Tn 2 ) n-2( 1- 2 1 Tn-2- 1-2) d d

v(t-r ) 
... v(t-T ) dT ... dn for n> >3.

(19)

Note that there is no second term on the right side of Eq. 18. This is because 2o = 0

(Eq. 16).

At this point, we can deduce solutions for the kernels. We require the kernels to be

piecewise continuous, and shall express them in symmetric form. Let us define

g(a, p) = h f(a) h f(-.) ha(P-,) dr. (20)
V--00

The solutions are

02 = 0 (21)
o

n 1 (T1 ) = 0 (22)

2(Tl r 2 ) = g(rl, T2 ) + 2 g(T2 r) (23)
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Sym 00

On(Tl .. ' T n) = 1 ... Tn - G ha( 1) h,( 2 ) hf(Tn-l-l- 2 2 ) hf(Tn- 2)

SOn-2 (T1-1- 2 T . n--1-2 ) didd }; for n > 3,

where

Sym
(T 1 t ..... T n ) If (T .. Tn)

(24)

indicates the operation of symmetrization 4 of the function f(...) in its arguments; T1,

... , T . This is accomplished by summing f(... ) in all n! possible permutations of its
n

T's and dividing the result by n!

4. Evaluation of the First Nonzero Kernel

As a first step toward evaluating 2
2 (T 1 , T 2 ) by Eq. 23, let us evaluate g(a, P). When

the expressions for hf(T), ha(T), and h (7), given by Eqs. 5, 7, and 10, are substituted

in Eq. 20, the result is

o0 G KL La
g(a, p) = j ( ) (a-.) i(P-,) JL L e

-o f a

- -a+ a

= (a) G(e) L L a
JLf L

Sn(a,P)
0

e+ a

e

+Rf a aA
+ + La

(25)

(26)

Here, m(a, p) is the minimum of a and p:

m(a, P) a

When the integration indicated in Eq. 25 is performed, the result is

When the integration indicated in Eq. 25 is performed, the result is

( f~f 
a

p(a) 4(P) G e

+ +a A m(ap+ L J -

R Rf a A
Lf L a Jf a

Rf Ra A
for the case- + -- , and

f La J
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- a+

g(a, p) - ji(a) (p) G a m(a,
JLfa

R R
for the case + -a

f a

A
J

MAXIMUM AT (- ,ro)

/To

Fig. XVII-25.

The first nonzero ker

(see Eq. 23). The result

The second-order kernel for the special case.

nel 02 (T1

is stated

T 2) is now found by symmetrizing Eq. 27

below. Figure XVII-2 shows 2 (T 1 , T 2 ) for

the special case

R Ra a A 1S= -2J -
L L 2JTf a o

R R A
For the case + Ra

L L Jf a
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(T1 + T 2 )
G m (TI T 2 ) -To

2 (1 '2 J La L e p (T 1 ) P (T 2 )

(28)
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G
S(TI , T2  = (T )  J (T Z )

Z(JLaRf+JLfRa-LaLfA)

*{exp - T1 + T2) + exp L 1L 2)

* exp + + m(T IT -

R Rf a A
For the case + La

f a

Gm(T71 T2)

2 = (TL) 1(T) 2JL LS af

exP L T1 +a T 2  + exp - 71 + 2 T

f a a f

5. Evaluation of the Higher Order Kernels

Equation 24 is a recursion formula whereby each of the higher order kernels

(3'f4 '  5 ,... ) can be evaluated by an integral and symmetrization operation upon that

kernel which precedes it by two orders. Since Eq. 22 states that 01 is zero, it then

follows that 3 , 5' 7 ... ; all of the succeeding odd-order kernels are zero.

02m+1 (1T .... 2m+l) = 0, for m = 0, 1, 2, .. . (29)

The even-order kernels, except for 2 , do not vanish. Indeed, it can be shown that

H mm+1 .m ... TZm > 0; if each of T 1  T. TZm > 0

S2m ( T 1' ' 2m) =  0; if any of 71 ... " 2m .< 0

for m = 1, 2, 3, .. (30)

These results allow us to rewrite the Volterra series representation for the speed

functional in a more convenient form. That is, if the series at Eq. 14 converges, then

by Eqs. 21, 29, and 30 we may write:

w(t) = . 2m(l''''zm) v(t- 1 ) '" v(t-T 2m) dT I... dT2m' (31)
-00m= 1

m= 1
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Two results follow immediately from Eq. 31. First, w(t) is an even function of v(t).

That is, if

v(t) -- (t),

then (32)

Second, the speed functional is realizable. That is,

w(t) is independent of v(t'), for all t' > t. (33)

6. Demonstration of Convergence

We may now prove that the Volterra series representation of the speed functional

converges absolutely for a class of bounded inputs:

Iv(t) < V, for all t. (34)

Consider the absolute value of the output speed, o(t). By Eqs. 31 and 34,

for all t. (35)WI(t) I< . .'" V2m /n2m (' ... 2 Tm) dT 1 ... d"2m,
m=1

It can be shown that

0 ... 2m( ... T2m) d 1 ... dT2m = G RR for m= 1, 2, 3,.

(36)

When the expression for the integral of the absolute value of the 2 mth kernel, Eq.

substituted in Eq. 35, the resultant power series converges to

Rf GV 2

w(t)I < 2 2 2'
AR Rf - G Va f

for all t

whenever

G2 V2

A < 1.
AR R

af

36, is

(37)

(38)

Thus it has been shown, by Eqs. 34, 37, and 38, that the Volterra series repre-

sentation of the speed functional, either Eqs. 14 or 31, converges absolutely whenever

the input voltage, v(t), is bounded in such a way that
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RN/AR
B v(t) < V aG for all t. (39)
B  G

It should be noted that while Eq. 39 is a sufficient condition for convergence, it is

not a necessary condition.

Since, for the class of input voltages specified by Eq. 39, the Volterra series speed

functional, Eq. 31, converges, and this series satisfies Eq. 11 by construction, and,

for this class of inputs, the solutions of Eq. 11 are unique, it is proved that o(t), as given

by Eq. 31, is the output speed of this shunt-wound commutator machine for any arbitrary

input voltage, v(t), that satisfies Eq. 39.

A literature search has failed to uncover any other published solution of the output

speed of a shunt commutator machine for an arbitrary input voltage. 5 ' 6

7. Errors of Truncation

If the Volterra series for w(t) is approximated by its first N nonzero terms and higher

order terms are neglected,

N
WN(t) =. 2nl . T Zn) v(t-T 1) ... v(t-TZn) dT .. dT2n, (40)

n= 1

where N is an integer > 1, then the truncation error of the approximation is

EN(t) = N(t) - W N(t). (41)

If the input voltage, v(t), satisfies Eq. 39, then by the use of Eqs. 31, 40, and 41, it

follows that the absolute value of the truncation error is bounded

IEN(t)I4 < I ... V2n (T 1 ,...,T Zn)I dT 1 ... dT2n, for all t.

n=N+ 1

(42)

When the expression for the integral of the absolute value of the 2n t h kernel, Eq. 36,

is substituted in Eq. 42, the resultant power series converges and, with the definition

of VB introduced in Eq. 39, the sum of that power series is

f ( (N+1)

RfV__
N(t)< G B , for all t. (43)

N(t) GB
V

R. B. Parente
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