215,004 research outputs found

    Surface r Modes and Burst Oscillations of Neutron Stars

    Full text link
    We study the rr-modes propagating in steadily mass accreting, nuclear burning, and geometrically thin envelopes on the surface of rotating neutron stars. For the modal analysis, we construct the envelope models which are fully radiaitive or have a convective region. As the angular rotation frequency Ω\Omega is increased, the oscillation frequency ω\omega of the rr-modes in the thin envelopes deviates appreciably from the asymptotic frequency ω=2mΩ/l(l+1)\omega=2m\Omega/l^\prime(l^\prime+1) defined in the limit of Ω0\Omega\to 0, where ω\omega is the frequency observed in the corotating frame of the star, and mm and ll^\prime are the indices of the spherical harmonic function YlmY_{l^\prime}^m representing the angular dependence of the modes. We find that the fundamental rr-modes in the convective models are destabilized by strong nuclear burning in the convective region. Because of excessive heating by nuclear buring, the corotating-frame oscillation frequency ω\omega of the rr-modes in the convective models becomes larger, and hence the inertial-frame oscillation frequency σ|\sigma| becomes smaller, than those of the corresopnding rr-modes in the radiative models, where σ=ωmΩ\sigma=\omega-m\Omega is negative for the rr-modes of positive mm. We find that the relative frequency change f=(σconvσrad)/σradf=-(\sigma_{conv}-\sigma_{rad})/\sigma_{rad} is always positive and becomes less than \sim0.01 for the fundamental rr-modes of l>m+1l^\prime>|m|+1 at σrad/2π|\sigma_{rad}|/2\pi\sim300Hz for m=1m=1 or at σrad/2π|\sigma_{rad}|/2\pi\sim600Hz for m=2m=2, where σconv\sigma_{conv} and σrad\sigma_{rad} denote the oscillation frequencies for the convective and the radiative envelope models, respectively.Comment: 20 pages, 12 figure

    Sediment and Hydrologic Budgets for the Lake of the Woods Watershed, Champaign County, Illinois

    Get PDF
    published or submitted for publicationis peer reviewedOpe

    Effects of translational and rotational degrees of freedom on the properties of model water

    Full text link
    Molecular dynamics simulations with separate thermostats for rotational and translational motions were used to study the effects of these degrees of freedom on the structure of water at a fixed density. To describe water molecules, we used the SPC/E model. The results indicate that an increase of the rotational temperature, TRT_\textrm{R}, causes a significant breaking of the hydrogen bonds. This is not the case, at least not to such an extent, when the translational temperature, TTT_\textrm{T}, is raised. The probability of finding an empty spherical cavity (no water molecule present) of a given size, strongly decreases with an increase of TRT_\textrm{R}, but this only marginally affects the free energy of the hydrophobe insertion. The excess internal energy increases proportionally with an increase of TRT_\textrm{R}, while an increase of TTT_\textrm{T} yields a much smaller effect at high temperatures. The diffusion coefficient of water exhibits a non-monotonous behaviour with an increase of the rotational temperature.Comment: 9 pages, 9 figure

    The Comstar D/3 gain degradation experiment

    Get PDF
    The results of gain degradation measurements using the Comstar D/3 19.04 GHz beacon are reported. This experiment utilized 0.6 and 5 m aperture antennas aligned along the same propagation path to examine propagation effects which are related to the antenna aperture size. Sample data for clear air, scintillation in clear air, and precipitation fading are presented. Distributions of the received signal levels and variances for both antennas are also presented

    A semantic-based system for querying personal digital libraries

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-28640-0_4. Copyright @ Springer 2004.The decreasing cost and the increasing availability of new technologies is enabling people to create their own digital libraries. One of the main topic in personal digital libraries is allowing people to select interesting information among all the different digital formats available today (pdf, html, tiff, etc.). Moreover the increasing availability of these on-line libraries, as well as the advent of the so called Semantic Web [1], is raising the demand for converting paper documents into digital, possibly semantically annotated, documents. These motivations drove us to design a new system which could enable the user to interact and query documents independently from the digital formats in which they are represented. In order to achieve this independence from the format we consider all the digital documents contained in a digital library as images. Our system tries to automatically detect the layout of the digital documents and recognize the geometric regions of interest. All the extracted information is then encoded with respect to a reference ontology, so that the user can query his digital library by typing free text or browsing the ontology

    Dynamical coupled-channel approach to hadronic and electromagnetic production of kaon-hyperon on the proton

    Full text link
    A dynamical coupled-channel formalism for processes πNKY\pi N \to KY and γNKY\gamma N \to KY is presented which provides a comprehensive investigation of recent data on the γpK+Λ\gamma p \to K^+ \Lambda reaction. The non-resonant interactions within the subspace KYπNKY\oplus\pi N are derived from effective Lagrangians, using a unitary transformation method. The calculations of photoproduction amplitudes are simplified by casting the coupled-channel equations into a form such that the empirical γNπN\gamma N \to \pi N amplitudes are input and only the parameters associated with the KYKY channel are determined by performing χ2\chi^2-fits to all of the available data for πpKΛ,KΣ\pi^- p \to K^\circ\Lambda, K^\circ\Sigma^\circ and γpK+Λ\gamma p \to K^+\Lambda. Good agreement between our models and those data are obtained. In the fits to πNKY\pi N \to KY channels, most of the parameters are constrained within ±20\pm 20% of the values given by the Particle Data Group and/or quark model predictions, while for γpK+Λ\gamma p \to K^+ \Lambda parameters, ranges compatible with broken SU(6)O(3)SU(6)\otimes O(3) symmetry are imposed. The main reaction mechanisms in K+ΛK^+ \Lambda photoproduction are singled out and issues related to newly suggested resonances S11S_{11}, P13P_{13}, and D13D_{13} are studied. Results illustrating the importance of using a coupled-channel treatment are reported. Meson cloud effects on the γNN\gamma N \to N^* transitions are also discussed.Comment: Accepted Physical Review

    Exact Ground-State Energy of the Ising Spin Glass on Strips

    Full text link
    We propose a new method for exact analytical calculation of the ground-state energy of the Ising spin glass on strips. An outstanding advantage of this method over the numerical transfer matrix technique is that the energy is obtained for complex values of the probability describing quenched randomness. We study the ±J\pm J and the site-random models using this method for strips of various sizes up to 5×5\times\infty. The ground-state energy of these models is found to have singular points in the complex-probability plane, reminiscent of Lee-Yang zeros in the complex-field plane for the Ising ferromagnet. The ±J\pm J Ising model has a series of singularities which may approach a limiting point around p0.9p \sim 0.9 on the real axis in the limit of infinite width.Comment: 10 pages, 12 Postscript figures, LaTeX, uses subeqn.sty, minor changes in tex-fil

    Coupled channel study of K+ΛK^+\Lambda photoproduction

    Full text link
    A coupled channel model with γN\gamma N, KYKY and πN\pi N channels has been used to analyze the recent data of γpK+Λ\gamma p \to K^+ \Lambda. The non-resonant interactions within the subspace KYπNKY \oplus \pi N are derived from effective Lagrangians using a unitary transformation method. The direct photoproduction reaction is obtained from a chiral constituent quark model with SU(6)O(3)SU(6)\otimes O(3) breaking. Missing baryon resonances issues are briefly discussed.Comment: Part of the proceedings of the International Workshop on the Physics of Excited Baryons NSTAR05, 12-15 October 2005, Tallahassee, Florida, US
    corecore