150 research outputs found

    Serum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin And Metalloproteinase 10 in Type 1 Diabetes

    Get PDF
    Background The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of diabetic complications, and soluble forms of the receptor (sRAGE) can counteract the detrimental action of the full-length receptor by acting as decoy. Soluble RAGE is produced by alternative splicing [endogenous secretory RAGE (esRAGE)] and/or by proteolytic cleavage of the membrane-bound receptor. We have investigated the role of A Disintegrin And Metalloproteinase 10 (ADAM10) in the ectodomain shedding of RAGE. Methods Constitutive and insulin-induced shedding of RAGE in THP-1 macrophages by ADAM10 was evaluated using an ADAM10-specific metalloproteinase inhibitor. Serum ADAM10 level was measured in type 1 diabetes and control subjects, and the association with serum soluble RAGE was determined. Serum total sRAGE and esRAGE were assayed by ELISA and the difference between total sRAGE and esRAGE gave an estimated measure of soluble RAGE formed by cleavage (cRAGE). Results RAGE shedding (constitutive and insulin-induced) was significantly reduced after inhibition of ADAM10 in macrophages, and insulin stimulated ADAM10 expression and activity. Diabetic subjects have higher serum total sRAGE and esRAGE (p<0.01) than controls, and serum ADAM10 was also increased (p<0.01). Serum ADAM10 correlated with serum cRAGE in type 1 diabetes (r = 0.40, p<0.01) and in controls (r = 0.31. p<0.01) but no correlations were seen with esRAGE. The association remained significant after adjusting for age, gender, BMI, smoking status and HbA1c. Conclusion Our data suggested that ADAM10 contributed to the shedding of RAGE. Serum ADAM10 level was increased in type 1 diabetes and was a significant determinant of circulating cRAGE.published_or_final_versio

    A step into the world of Pakistanis: oral health education for Pakistani adults in Hong Kong

    Get PDF
    Includes bibliographical references (p. 32).Questionnaire in English and Urdu.published_or_final_versio

    Association between treatment with apixaban, dabigatran, rivaroxaban, or warfarin and the risk of osteoporotic fractures among patients with atrial fibrillation: A population-based cohort study

    Get PDF
    Background: It is unclear whether anticoagulant type is associated with the risk for osteoporotic fracture, a deleterious complication of anticoagulants among patients with atrial fibrillation (AF). Objective: To compare the risk for osteoporotic fracture between anticoagulants. Design: Population-based cohort study. Setting: Territory-wide electronic health record database of the Hong Kong Hospital Authority. Participants: Patients newly diagnosed with AF between 2010 and 2017 who received a new prescription for warfarin or a direct oral anticoagulant (DOAC) (apixaban, dabigatran, or rivaroxaban). Follow-up ended on 31 December 2018. Measurements: Osteoporotic hip and vertebral fractures in anticoagulant users were compared using propensity score–weighted cumulative incidence differences (CIDs). Results: There were 23 515 patients identified (3241 apixaban users, 6867 dabigatran users, 3866 rivaroxaban users, and 9541 warfarin users). Overall mean age was 74.4 years (SD, 10.8), ranging from 73.1 years (warfarin) to 77.9 years (apixaban). Over a median follow-up of 423 days, 401 fractures were identified (crude event number [weighted rate per 100 patient-years]: apixaban, 53 [0.82]; dabigatran, 95 [0.76]; rivaroxaban, 57 [0.67]; and warfarin, 196 [1.11]). After 24-month follow-up, DOAC use was associated with a lower risk for fracture than warfarin use (apixaban CID, −0.88% [95% CI, −1.66% to −0.21%]; dabigatran CID, −0.81% [CI, −1.34% to −0.23%]; and rivaroxaban CID, −1.13% [CI, −1.67% to −0.53%]). No differences were seen in all head-to-head comparisons between DOACs at 24 months (apixaban vs. dabigatran CID, −0.06% [CI, −0.69% to 0.49%]; rivaroxaban vs. dabigatran CID, −0.32% [CI, −0.84% to 0.18%]; and rivaroxaban vs. apixaban CID, −0.25% [CI, −0.86% to 0.40%]). Limitation: Residual confounding is possible. Conclusion: Among patients with AF, DOAC use may result in a lower risk for osteoporotic fracture compared with warfarin use. Fracture risk does not seem to be altered by the choice of DOAC. These findings may help inform the benefit–risk assessment when choosing between anticoagulants. Primary Funding Source: The University of Hong Kong and University College London Strategic Partnership Fund

    Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle

    Get PDF
    The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development

    Decoding the Epigenetic Language of Plant Development

    Get PDF
    Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on ‘Epigenetics and Plant Development’ (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines

    A network linking scene perception and spatial memory systems in posterior cerebral cortex

    Get PDF
    The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation

    Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    Get PDF
    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies

    Nucleo-cytoplasmic transport of proteins and RNA in plants

    Get PDF
    Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports. 2011;30(2):153-176.Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants
    corecore