23 research outputs found

    On the stability of general relativistic geometric thin disks

    Full text link
    The stability of general relativistic thin disks is investigated under a general first order perturbation of the energy momentum tensor. In particular, we consider temporal, radial and azimuthal "test matter" perturbations of the quantities involved on the plane z=0z=0. We study the thin disks generated by applying the "displace, cut and reflect" method, usually known as the image method, to the Schwarzschild metric in isotropic coordinates and to the Chazy-Curzon metric and the Zipoy-Voorhees metric (Îł\gamma-metric) in Weyl coordinates. In the case of the isotropic Schwarzschild thin disk, where a radial pressure is present to support the gravitational attraction, the disk is stable and the perturbation favors the formation of rings. Also, we found the expected result that the thin disk models generated by the Chazy-Curzon and Zipoy-Voorhees metric with only azimuthal pressure are not stable under a general first order perturbationComment: 11 pages, RevTex. Phys Rev D (in press

    Charged Annular Disks and Reissner-Nordstr\"{o}m Type Black Holes from Extremal Dust

    Full text link
    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disk-like configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential and an auxiliary function,which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin Inversion Method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstr\"{o}m black hole can be embedded into the center of the disks by adding a boundary term in the inversion.Comment: 17 revtex pages, 8 eps figure

    Gravitationally induced electromagnetism at the Compton scale

    Full text link
    It is shown that Einstein gravity tends to modify the electric and magnetic fields appreciably at distances of the order of the Compton wavelength. At that distance the gravitational field becomes spin dominated rather than mass dominated. The gravitational field couples to the electromagnetic field via the Einstein-Maxwell equations which in the simplest model causes the electrostatic field of charged spinning particles to acquire an oblate structure relative to the spin direction. For electrons and protons, a pure Coulomb field is therefore likely to be incompatible with general relativity at the Compton scale. In the simplest model, the magnetic dipole corresponds to the Dirac g-factor, g=2. Also, it follows from the form of the electric field that the electric dipole moment vanishes, in agreement with current experimental limits for the electron. Quantitatively, the classical Einstein-Maxwell theory predicts the magnetic and electric dipoles of the electron to an accuracy of about one part in 10^{-3} or better. Going to the next multipole order, one finds that the first non-vanishing higher multipole is the electric quadrupole moment which is predicted to be -124 barn for the electron. Any non-zero value of the electric quadrupole moment for the electron or the proton would be a clear sign of curvature due to the implied violation of rotation invariance. There is also a possible spherical modification of the Coulomb force proportional to r^{-4}. However, the size of this effect is well below current experimental limits. The corrections to the hydrogen spectrum are expected to be small but possibly detectable.Comment: 11 pages, 3 figures: revised version published in Class. Quantum Grav. 23 (2006) 3111-3122; Conclusions unchange

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    Gravitating discs around black holes

    Full text link
    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be available from http://www.iop.org/EJ/journal/CQ

    Magnetic layers and neutral points near rotating black hole

    Full text link
    Magnetic layers are narrow regions where the field direction changes sharply. They often occur in the association with neutral points of the magnetic field. We show that an organised field can produce these structures near a rotating black hole, and we identify them as potential sites of magnetic reconnection. To that end we study the field lines affected by the frame-dragging effect, twisting the magnetic structure and changing the position of neutral points. We consider oblique fields in vacuum. We also include the possibility of translational motion of the black hole which may be relevant when the black hole is ejected from the system. The model settings apply to the innermost regions around black holes with the ergosphere dominated by a super-equipartition magnetic field and loaded with a negligible gas content.Comment: 10 pages, 3 figures, Classical and Quantum Gravity accepte

    Changing climate both increases and decreases European river floods

    Get PDF
    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results\u2014arising from the most complete database of European flooding so far\u2014suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management

    Evolution of low flows in Czechia revisited

    No full text
    Although a nationwide study focusing on the evolution of low flows in Czechia was conducted in the past, a need for the revision of the results has arisen. By means of the trend analysis, which specifically considers the presence of significant serial correlation at the first lag, the former study highlighted areas where 7-day low flows increase or decrease. However, taking into account only the lag-one autoregressive process might still have led to the detection of so-called pseudo-trends because, besides short-term persistence, also long-term persistence may adversely influence the variance of the test statistic when the independence among data is required. Therefore, one should carefully investigate the presence of persistence in time series. Before the trend analysis itself, the authors' previous studies aimed at the discrimination between short memory processes and long memory processes employing jointly the Phillips–Perron test and the Kwiatkowski–Phillips–Schmidt–Shin test. This analysis was accompanied by the Hurst exponent estimation. Here, the subsequent identification of trends is carried out using three modifications of the Mann–Kendall test that allow different kinds of persistence. These include the Bayley–Hammersley–Matalas–Langbein–Lettenmaier equivalent sample size approach, the trend-free pre-whitening approach and a block bootstrap with automatic selection of the block length, which was applied for the first time in hydrology. The general results are similar to those presented in the former study on trends. Nevertheless, the divergent minimum discharges evolution in the western part of Czechia is now much clear. Moreover, no significant increasing trend in series incorporating Julian days was found
    corecore