1,340 research outputs found
Specht modules and semisimplicity criteria for Brauer and Birman--Murakami--Wenzl Algebras
A construction of bases for cell modules of the Birman--Murakami--Wenzl (or
B--M--W) algebra by lifting bases for cell modules of
is given. By iterating this procedure, we produce cellular bases for B--M--W
algebras on which a large abelian subalgebra, generated by elements which
generalise the Jucys--Murphy elements from the representation theory of the
Iwahori--Hecke algebra of the symmetric group, acts triangularly. The
triangular action of this abelian subalgebra is used to provide explicit
criteria, in terms of the defining parameters and , for B--M--W algebras
to be semisimple. The aforementioned constructions provide generalisations, to
the algebras under consideration here, of certain results from the Specht
module theory of the Iwahori--Hecke algebra of the symmetric group
Possibilities for CO2 emission reduction using biomass in European integrated steel plants
Iron and steel plants producing steel via the blast furnace-basic oxygen furnace (BF-BOF) route constitute among the largest single point CO2 emitters within the European Union (EU). As the iron ore reduction process in the blast furnace is fully dependent on carbon mainly supplied by coal and coke, bioenergy is the only renewable that presents a possibility for their partial substitution. Using the BeWhere model, this work optimised the mobilization and use of biomass resources within the EU in order to identify the opportunities that bioenergy can bring to the 30 operating BF-BOF plants.
The results demonstrate competition for the available biomass resources within existing industries and economically unappealing prices of the bio-based fuels. A carbon dioxide price of 60 € t−1 is required to substitute 20% of the CO2 emissions from the fossil fuels use, while a price of 140 € t−1 is needed to reach the maximum potential of 42%. The possibility to use organic wastes to produce hydrochar would not enhance the maximum emission reduction potential, but it would broaden the available feedstock during the low levels of substitution.
The scope for bioenergy integration is different for each plant and so consideration of its deployment should be treated individually. Therefore, the EU-ETS (Emission Trading System) may not be the best policy tool for bioenergy as an emission reduction strategy for the iron and steel industry, as it does not differentiate between the opportunities across the different steel plants and creates additional costs for the already struggling European steel industry
Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy
We are developing lumped-element kinetic inductance detectors (LEKIDs)
designed to achieve background-limited sensitivity for far-infrared (FIR)
spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne
Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of
dusty galaxies with observations of the [CII] 158 m and other atomic
fine-structure transitions at , both through direct observations of
individual luminous infrared galaxies, and in blind surveys using the technique
of line intensity mapping. The spectrometer will require large format
(1800 detectors) arrays of dual-polarization sensitive detectors with
NEPs of W Hz. The low-volume LEKIDs are fabricated
with a single layer of aluminum (20 nm thick) deposited on a crystalline
silicon wafer, with resonance frequencies of MHz. The inductor is a
single meander with a linewidth of 0.4 m, patterned in a grid to absorb
optical power in both polarizations. The meander is coupled to a circular
waveguide, fed by a conical feedhorn. Initial testing of a small array
prototype has demonstrated good yield, and a median NEP of
W Hz.Comment: accepted for publication in Journal of Low Temperature Physic
Antenna-coupled TES bolometer arrays for CMB polarimetry
We describe the design and performance of polarization selective
antenna-coupled TES arrays that will be used in several upcoming Cosmic
Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully
lithographic polarimeter arrays utilize planar phased-antennas for collimation
(F/4 beam) and microstrip filters for band definition (25% bandwidth). These
devices demonstrate high optical efficiency, excellent beam shapes, and
well-defined spectral bands. The dual-polarization antennas provide
well-matched beams and low cross polarization response, both important for
high-fidelity polarization measurements. These devices have so far been
developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave
atmospheric windows for CMB observations. In the near future, the flexible
microstrip-coupled architecture can provide photon noise-limited detection for
the entire frequency range of the CMBPOL mission. This paper is a summary of
the progress we have made since the 2006 SPIE meeting in Orlando, FL
Antenna-coupled TES bolometer arrays for CMB polarimetry
We describe the design and performance of polarization selective
antenna-coupled TES arrays that will be used in several upcoming Cosmic
Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully
lithographic polarimeter arrays utilize planar phased-antennas for collimation
(F/4 beam) and microstrip filters for band definition (25% bandwidth). These
devices demonstrate high optical efficiency, excellent beam shapes, and
well-defined spectral bands. The dual-polarization antennas provide
well-matched beams and low cross polarization response, both important for
high-fidelity polarization measurements. These devices have so far been
developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave
atmospheric windows for CMB observations. In the near future, the flexible
microstrip-coupled architecture can provide photon noise-limited detection for
the entire frequency range of the CMBPOL mission. This paper is a summary of
the progress we have made since the 2006 SPIE meeting in Orlando, FL
Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy
Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields
Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer
SuperSpec is a novel on-chip spectrometer we are developing for multi-object,
moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter
and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer
employs a filter bank architecture, and consists of a series of half-wave
resonators formed by lithographically-patterned superconducting transmission
lines. The signal power admitted by each resonator is detected by a lumped
element titanium nitride (TiN) kinetic inductance detector (KID) operating at
100-200 MHz. We have tested a new prototype device that is more sensitive than
previous devices, and easier to fabricate. We present a characterization of a
representative R=282 channel at f = 236 GHz, including measurements of the
spectrometer detection efficiency, the detector responsivity over a large range
of optical loading, and the full system optical efficiency. We outline future
improvements to the current system that we expect will enable construction of a
photon-noise-limited R=100 filter bank, appropriate for a line intensity
mapping experiment targeting the [CII] 158 micron transition during the Epoch
of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes
+ Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy VI
A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics
We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN)
microwave kinetic inductance detectors. Energy resolution of 0.4 eV and
arrival-time resolution of 1.2 microseconds are achieved. 0-, 1-, 2-photon
events are resolved and shown to follow Poisson statistics. We find that the
temperature-dependent frequency shift deviates from the Mattis-Bardeen theory,
and the dissipation response shows a shorter decay time than the frequency
response at low temperatures. We suggest that the observed anomalous
electrodynamics may be related to quasiparticle traps or subgap states in the
disordered TiN films. Finally, the electron density-of-states is derived from
the pulse response.Comment: 4 pages, 3 figure
Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature
The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an important role in future applications of graphene, including optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat, with a minimum value of 10k_B (10^(−22)  J/K) per square micron. We test the validity of the Wiedemann-Franz law and find that the Lorenz number equals 1.32×(π^2/3)(kB/^e)^2. The electron-phonon thermal conductance has a temperature power law T^2 at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting electrodes, which sets the stage for future graphene-based single-microwave photon detection
Noise Temperature and IF Bandwidth of a 530 GHz Heterodyne Receiver Employing a Diffusion-Cooled Superconducting Hot-Electron Mixer
We report on the first heterodyne measurements with a diffusion-cooled hot-electron bolometer mixer in the submillimeter wave band, using a waveguide mixer cooled to 2.2 K. The best receiver noise temperature at a local oscillator frequency of 533 GHz and an intermediate frequency of 1.4 GHz was 650 K (double sideband). The 3 dB IF roll-off frequency was around 1.7 to 1.9 GHz, with a weak dependence on the device bias conditions
- …