3,207 research outputs found

    Hard x-ray polarimeter for gamma-ray bursts and solar flares

    Get PDF
    We report on the development of a dedicated polarimeter design that is capable of studying the linear polarization of hard X-rays (50-300 keV) from gamma-ray bursts and solar flares. This compact design, based on the use of a large area position-sensitive PMT (PSPMT), is referred to as GRAPE (Gamma-RAy Polarimeter Experiment). The PSPMT is used to determine the Compton interaction location within an array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. One feature of GRAPE that is especially attractive for studies of gamma-ray bursts is the significant off-axis response (at angles \u3e 60 degrees). The modular nature of this design lends itself toward its accomodation on a balloon or spacecraft platform. For an array of GRAPE modules, sensitivity levels below a few percent can be achieved for both gamma-ray bursts and solar flares. Here we report on the latest results from the testing of a laboratory science model

    The Development of GRAPE, a Gamma Ray Polarimeter Experiment

    Get PDF
    The measurement of hard X‐ray polarization in γ‐ray bursts (GRBs) would add yet another piece of information in our effort to resolve the true nature of these enigmatic objects. Here we report on the development of a dedicated polarimeter design with a relatively large FoV that is capable of studying hard X‐ray polarization (50–300 keV) from GRBs. This compact design, based on the use of a large area position‐sensitive PMT (PSPMT), is referred to as GRAPE (Gamma‐RAy Polarimeter Experiment). The feature of GRAPE that is especially attractive for studies of GRBs is the significant off‐axis polarization response (at angles greater than 60°). For an array of GRAPE modules, current sensitivity estimates give minimum detectable polarization (MDP) levels of a few percent for the brightest GRBs

    Dedicated polarimeter design for hard x-ray and soft gamma-ray astronomy

    Get PDF
    We have developed a modular design for a hard X-ray and soft gamma-ray polrimeter that we call GRAPE (Gamma RAy Polarimeter Experiment). Optimized for the energy range of 50-300 keV, the GRAPE design is a Compton polarimeter based on the use of an array of plastic scintillator scattering elements in conjunction with a centrally positioned high-Z calorimeter detector. Here we shall review the results from a laboratory model of the baseline GRAPE design. The baseline design uses a 5-inch diameter position sensitive PMT (PSPMT) for readout of the plastic scintillator array and a small array of CsI detectors for measurement of the scattered photon. An improved design, based on the use of large area multi-anode PMTs (MAPMTs), is also discussed along with plans for laboratory testing of a prototype. An array of GRAPE modules could be used as the basis for a dedicated science mission, either on a long duration balloon or on an orbital mission. With a large effective FoV, a non-imaging GRAPE mission would be ideal for studying polarization in transient sources (gamma ray bursts and solar flares). It may also prove useful for studying periodically varying sources, such as pulsars. An imaging system would improve the sensitivity of the polarization measurements for transient and periodic sources and may also permit the measurement of polarization in steady-state sources

    Eigenvalue variance bounds for Wigner and covariance random matrices

    Get PDF
    This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by Erd\"os, Yau and Yin. The case of real Wigner matrices is obtained from interlacing formulas. As an application, bounds on the expected 2-Wasserstein distance between the empirical spectral measure and the semicircle law are derived. Similar results are available for random covariance matrices

    Perimeter of sublevel sets in infinite dimensional spaces

    Full text link
    We compare the perimeter measure with the Airault-Malliavin surface measure and we prove that all open convex subsets of abstract Wiener spaces have finite perimeter. By an explicit counter-example, we show that in general this is not true for compact convex domains

    The Meinunger "Nicht Rote" Objects

    Get PDF
    Four high-latitude slow variable stars have been noted by Meinunger (1972) as "nicht rote" ("not red") objects and thus curious. We have previously reported (Margon & Deutsch 1997) that one of these objects, CC Boo, is in fact a QSO. Here we present observations demonstrating that the remaining three are also highly variable active galactic nuclei. The most interesting object of the four is perhaps S 10765 (= NGP9 F324-0276706), which proves to be a resolved galaxy at z=0.063. Despite the rapid and large reported variability amplitude (~1.6 mag), the spectrum is that of a perfectly normal galaxy, with no emission lines or evident nonthermal continuum. We also present new spectroscopic and photometric observations for AR CVn, suggested by Meinunger to be an RR Lyrae star despite its very faint magnitude (=19.4). The object is indeed one of the most distant RR Lyrae stars known, at a galactocentric distance of ~40 kpc.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, Volume 111, January 1999; 14 pages including 4 figures and 1 tabl

    On Hastings' counterexamples to the minimum output entropy additivity conjecture

    Full text link
    Hastings recently reported a randomized construction of channels violating the minimum output entropy additivity conjecture. Here we revisit his argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument. Furthermore, we prove non-additivity for the overwhelming majority of channels consisting of a Haar random isometry followed by partial trace over the environment, for an environment dimension much bigger than the output dimension. This makes Hastings' original reasoning clearer and extends the class of channels for which additivity can be shown to be violated.Comment: 17 pages + 1 lin

    On the sizes of z>2 Damped Lyman-alpha Absorbing Galaxies

    Full text link
    Recently, the number of detected galaxy counterparts of z > 2 Damped Lyman-alpha Absorbers in QSO spectra has increased substantially so that we today have a sample of 10 detections. M{\o}ller et al. in 2004 made the prediction, based on a hint of a luminosity-metallicity relation for DLAs, that HI size should increase with increasing metallicity. In this paper we investigate the distribution of impact parameter and metallicity that would result from the correlation between galaxy size and metallicity. We compare our observations with simulated data sets given the relation of size and metallicity. The observed sample presented here supports the metallicity-size prediction: The present sample of DLA galaxies is consistent with the model distribution. Our data also show a strong relation between impact parameter and column density of HI. We furthermore compare the observations with several numerical simulations and demonstrate that the observations support a scenario where the relation between size and metallicity is driven by feedback mechanisms controlling the star-formation efficiency and outflow of enriched gas.Comment: Accepted for publishing in MNRAS lette

    Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255

    Full text link
    We report on one year of photometric monitoring of the ultraluminous BAL quasar APM 08279+5255. The temporal sampling reveals that this gravitationally lensed system has brightened by ~0.2 mag in 100 days. Two potential causes present themselves; either the variability is intrinsic to the quasar, or it is the result of microlensing by stars in a foreground system. The data is consistent with both hypotheses and further monitoring is required before either case can be conclusively confirmed. We demonstrate, however, that gravitational microlensing can not play a dominant role in explaining the phenomenal properties exhibited by APM 08279+5255. The identification of intrinsic variability, coupled with the simple gravitational lensing configuration, would suggest that APM 08279+5255 is a potential golden lens from which the cosmological parameters can be derived and is worthy of a monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.
    • 

    corecore