126 research outputs found

    Проектирование электрических силовых установок при поддержке многоцелевыми стратегиями оптимизации

    Get PDF
    Electric drive systems consisting of battery, inverter, electric motor and gearbox are applied in hybridor purely electric vehicles. The layout process of such propulsion systems is performed on system level under consideration of various component properties and their interfering characteristics. In addition, different boundary conditions are taken under account, e. g. performance, efficiency, packaging, costs. In this way, the development process of the power train involves a broad range of influencing parameters and periphery conditions and thus represents a multi-dimensional optimization problem. Stateof-the-art development processes of mechatronic systems are usually executed according to the V-model, which represents a fundamental basis for handling the complex interactions of the different disciplines involved. In addition, stage-gate processes and spiral models are applied to deal with the high level of complexity during conception, design and testing. Involving a large number of technical and economic factors, these sequential, recursive processes may lead to suboptimal solutions since the system design processes do not sufficiently consider the complex relations between the different, partially conflicting domains. In this context, the present publication introduces an integrated multi-objective optimization strategy for the effective conception of electric propulsion systems, which involves a holistic consideration of all components and requirements in a multi-objective manner. The system design synthesis is based on component-specific Pareto-optimal designs to handle performance, efficiency, package and costs for given system requirements. The results are displayed as Pareto-fronts of electric power train system designs variants, from which decision makers are able to choose the best suitable solution. In this way, the presented system design approach for the development of electrically driven axles enables a multi-objective optimization considering efficiency, performance, costs and package. It is capable to reduce development time and to improve overall system quality at the same time.Системы электропривода, состоящие из аккумулятора, инвертора, электродвигателя и коробки передач, применяются в гибридных или чисто электрических транспортных средствах. Процесс компоновки таких движительных систем осуществляется на системном уровне с учетом различных свойств компонентов и их интерферирующих характеристик. Кроме того, учитываются разные граничные условия, например технические характеристики, эффективность, комплектование, стоимость. Таким образом, процесс разработки силовой передачи включает в себя широкий диапазон влияющих параметров и периферических условий и тем самым представляет собой проблему многомерной оптимизации. Современные процессы разработки мехатронных систем обычно выполняются в соответствии с V-моделью, которая представляет собой фундаментальную основу для управления сложными взаимодействиями различных дисциплин. Кроме того, применяются этапные процессы и спиральные модели, чтобы справиться с высоким уровнем сложности при разработке, проектировании и тестировании. Вовлекая большое количество технических и экономических факторов, эти последовательные рекурсивные процессы могут привести к неоптимальным решениям, поскольку процессы проектирования системы недостаточно учитывают сложные отношения между различными, частично конфликтующими областями. В этом контексте настоящая публикация представляет интегрированную многоцелевую стратегию оптимизации для эффективной концепции электрических силовых установок, включающую комплексное рассмотрение всех компонентов и требований на многоцелевой основе. Синтез системного дизайна основан на Парето-оптимальных конструкциях со специфическими компонентами с целью обеспечения работы, эффективности, комплектации и затрат, предусмотренных для данной системы. Результаты отображаются в виде Парето-фронтов вариантов систем электрических трансмиссий, из которых лица, принимающие решения, могут выбрать наиболее подходящее из них. Таким образом, представленный подход к проектированию системы для разработки осей с электрическим приводом обеспечивает многоцелевую оптимизацию с учетом эффективности, функционирования, стоимости и комплектации. Данный подход позволяет сократить время разработки и одновременно обеспечить улучшение качества системы

    The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications

    Get PDF
    Calcitic speleothems in caves can form through abiogenic or biogenic processes, or through a combination of both. Many issues conspire to make the assessment of biogenicity difficult, especially when focusing on old speleothem deposits. This study reports on a multiproxy analysis of a Siberian stalactite, combining high-resolution microscopy, isotope geochemistry and microbially enhanced mineral precipitation laboratory experiments. The contact between growth layers in a stalactite exhibits a biogenic isotopic signature; coupled with morphological evidence, this supports a microbial origin of calcite crystals. SIMS δ<sup>13</sup>C data suggest that microbially mediated speleothem formation occurred repeatedly at short intervals before abiotic precipitation took over. The studied stalactite also contains iron and manganese oxides that have been mediated by microbial activity through extracellular polymeric substance (EPS)-influenced organomineralization processes. The latter reflect paleoenvironmental changes that occurred more than 500 000 yr ago, possibly related to the presence of a peat bog above the cave at that time. Microbial activity can initiate calcite deposition in the aphotic zone of caves before inorganic precipitation of speleothem carbonates. This study highlights the importance of microbially induced fractionation that can result in large negative δ<sup>13</sup>C excursions. The microscale biogeochemical processes imply that microbial activity has only negligible effects on the bulk δ<sup>13</sup>C signature in speleothems, which is more strongly affected by CO<sub>2</sub> degassing and the host rock signature

    Distinguishing the vegetation and soil component of &delta;13C variation in speleothem records from degassing and prior calcite precipitation effects

    Get PDF
    The carbon isotopic signature inherited from soil/epikarst processes may be modified by degassing and prior calcite precipitation (PCP) before its imprint on speleothem calcite. Despite laboratory demonstration of PCP effects on carbon isotopes and increasingly sophisticated models of the governing processes, to date, there has been limited effort to deconvolve the dual PCP and soil/epikarst components in measured speleothem isotopic time series. In this contribution, we explore the feasibility, advantages, and disadvantages of using trace element ratios and &delta;44Ca to remove the overprinting effect of PCP on measured &delta;13C to infer the temporal variations in the initial &delta;13C of dripwater. In 8 examined stalagmites, the most widely utilized PCP indicators Mg/Ca and &delta;44Ca covary as expected. However, Sr/Ca does not show consistent relationships with &delta;44Ca so PCP is not universally the dominant control on Sr/Ca. From &delta;44Ca and Mg/Ca, our calculation of PCP as fCa, fraction of initial Ca remaining at the deposition of the stalagmite layer, yields multiple viable solutions depending on the assumed &delta;44Ca fractionation factor and inferred variation in DMg. Uncertainty in the effective fractionation of &delta;13C during degassing and precipitation contributes to uncertainty in the absolute value of estimated initial &delta;13C. Nonetheless, the trends in initial &delta;13C are less sensitive to these uncertainties. In coeval stalagmites from the same cave spanning 94 to 82 ka interval, trends in calculated initial &delta;13C are more similar than those in measured &delta;13C, and reveal a common positive anomaly initial &delta;13C during a stadial cooling event. During deglaciations, the trend of greater respiration rates and higher soil CO2 is captured in the calculated initial &delta;13C, despite the tendency of higher interglacial dripwater situation to favor more extensive PCP.</p

    Local and Regional Indian Summer Monsoon Precipitation Dynamics During Termination II and the Last Interglacial

    Get PDF
    To date Indian summer monsoon (ISM) dynamics have been assessed by changes in stalagmite δ18O. However, stalagmite δ18O is influenced by multiple environmental factors (e.g., atmospheric moisture transport, rainfall amount at the study site, and ISM seasonality), precluding simple and clear reconstructions of rainfall amount or variability. This study aims to disentangle these environmental factors by combining δ18O, δ44Ca, and elemental data from a stalagmite covering Termination II and the last interglacial from Mawmluh Cave, NE India, to produce a semiquantitative reconstruction of past ISM rainfall. We interpret δ18O as a mixed signal of rainfall source dynamics and rainfall amount and coupled δ44Ca and X/Ca ratios as indicators of local infiltration rate and prior calcite precipitation in the karst zone. The wettest conditions in our studied interval (135 and 100 kyrs BP; BP = before present, with the present being 1950 CE) occurred during Marine Isotope Stage 5e. Our multiproxy data set suggests a likely change in seasonal distribution of Marine Isotope Stage 5e rainfall compared to the Holocene; the wet season was longer with higher‐than‐modern dry season rainfall. Using the last interglacial as an analogue for future anthropogenic warming, our data suggest a more erratic ISM behavior in a warmer world

    A novel approach for construction of radiocarbon-based chronologies for speleothems

    Get PDF
    Robust chronologies are crucial for the correct interpretation of climate proxy records and for detailed reconstructions of palaeoclimate. Stalagmites have garnered strong interest as recorders of past climate in part due to their amenability to U-series dating. However, many stalagmites are not dateable using this technique due to low 238U and/or high detrital Th concentrations (e.g., many tropical cave systems (Adkins et al., 2013)), and occasionally these issues affect stalagmites across wide geographical regions (e.g., large parts of Australia (Green et al. 2013)) complicating the use of stalagmites in these areas. Radiocarbon (14C) offers an alternative method of dating stalagmites, but issues associated with the ‘dead carbon fraction’ (DCF) have historically hindered this approach. Here, a novel 14C-based method for dating stalagmites is presented and discussed. The technique calculates a best-fit growth rate between a time-series of stalagmite 14C data and known atmospheric 14C variability. The new method produces excellent results for stalagmites that satisfy four requirements: i) the absence of long-term secular variability in DCF (i.e., stalagmite DCF varies around a mean value with no long-term trend), ii) stalagmite growth rate does not vary significantly (the technique identifies stalagmites with substantial growth rate variability), iii) the stalagmite record is long enough that measurable 14C decay has occurred, and iv) one ‘anchor’ point exists where the calendar age is known. The model produces good results for a previously U–Th dated stalagmite from Heshang Cave, China, and is then applied to an undated stalagmite from southern Poland. The new method will not replace high-precision U–Th measurements, because the precision of the technique is difficult to quantify. However, it provides a means for dating certain stalagmites undateable by conventional U–Th methods and for refining coarse U–Th chronologies

    Permafrost-related hiatuses in stalagmites: Evaluating the potential for reconstruction of carbon cycle dynamics

    Get PDF
    Permafrost is widely present throughout the Northern Hemisphere high latitudes, and stores large amounts of carbon in the form of frozen soil organic matter. The response of permafrost regions to anthropogenic climate change remains uncertain, in part because of a lack of information on their response to past changes in global climate. Here we test the use of stalagmites from two caves in Siberia as a novel, precisely dated, and highly localised archive of past permafrost carbon cycle dynamics. Stalagmite growth at these sites is controlled by the presence/absence of permafrost above the cave over glacial-interglacial time scales. We target the transition layer between two subsequent growth phases (interglacials) and the interval directly following growth resumption after the last glacial in three stalagmites, as this is where a geochemical imprint of thaw-related processes in the frozen zone between surface and cave would be recorded. We apply a multi-proxy approach including carbon isotopes (δ13C and 14C) and trace element concentrations, combined with petrographic analyses and high-resolution U-Th chronology. Our dataset indicates complex growth patterns and possible intervals of microbial colonisation of the stalagmite surface in the transition layers. High-resolution U-Th ages confirm that the transition layer is not a single, long growth hiatus, but rather a period of extremely slow or episodic growth phases, possibly during “skipped” interglacials. However, we find no conclusive evidence for a geochemical signature related to permafrost degradation and related local carbon cycle dynamics, which might be related to insufficient sensitivity of the archive for high-frequency processes and/or insufficient measurement resolution

    Aerosol forcing of the position of the intertropical convergence zone since AD1550

    Get PDF
    The position of the intertropical convergence zone is an important control on the distribution of low-latitude precipitation. Its position is largely controlled by hemisphere temperature contrasts1, 2. The release of aerosols by human activities may have resulted in a southward shift of the intertropical convergence zone since the early 1900s (refs 1, 3, 4, 5, 6) by muting the warming of the Northern Hemisphere relative to the Southern Hemisphere over this interval1, 7, 8, but this proposed shift remains equivocal. Here we reconstruct monthly rainfall over Belize for the past 456 years from variations in the carbon isotope composition of a well-dated, monthly resolved speleothem. We identify an unprecedented drying trend since ad 1850 that indicates a southward displacement of the intertropical convergence zone. This drying coincides with increasing aerosol emissions in the Northern Hemisphere and also marks a breakdown in the relationship between Northern Hemisphere temperatures and the position of the intertropical convergence zone observed earlier in the record. We also identify nine short-lived drying events since ad 1550 each following a large volcanic eruption in the Northern Hemisphere. We conclude that anthropogenic aerosol emissions have led to a reduction of rainfall in the northern tropics during the twentieth century, and suggest that geographic changes in aerosol emissions should be considered when assessing potential future rainfall shifts in the tropics

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    O-Glycosylation Regulates Ubiquitination and Degradation of the Anti-Inflammatory Protein A20 to Accelerate Atherosclerosis in Diabetic ApoE-Null Mice

    Get PDF
    Background: Accelerated atherosclerosis is the leading cause of morbidity and mortality in diabetic patients. Hyperglycemia is a recognized independent risk factor for heightened atherogenesis in diabetes mellitus (DM). However, our understanding of the mechanisms underlying glucose damage to the vasculature remains incomplete. Methodology/Principal Findings: High glucose and hyperglycemia reduced upregulation of the NF-κB inhibitory and atheroprotective protein A20 in human coronary endothelial (EC) and smooth muscle cell (SMC) cultures challenged with Tumor Necrosis Factor alpha (TNF), aortae of diabetic mice following Lipopolysaccharide (LPS) injection used as an inflammatory insult and in failed vein-grafts of diabetic patients. Decreased vascular expression of A20 did not relate to defective transcription, as A20 mRNA levels were similar or even higher in EC/SMC cultured in high glucose, in vessels of diabetic C57BL/6 and FBV/N mice, and in failed vein grafts of diabetic patients, when compared to controls. Rather, decreased A20 expression correlated with post-translational O-Glucosamine-N-Acetylation (O-GlcNAcylation) and ubiquitination of A20, targeting it for proteasomal degradation. Restoring A20 levels by inhibiting O-GlcNAcylation, blocking proteasome activity, or overexpressing A20, blocked upregulation of the receptor for advanced glycation end-products (RAGE) and phosphorylation of PKCβII, two prime atherogenic signals triggered by high glucose in EC/SMC. A20 gene transfer to the aortic arch of diabetic ApoE null mice that develop accelerated atherosclerosis, attenuated vascular expression of RAGE and phospho-PKCβII, significantly reducing atherosclerosis. Conclusions: High glucose/hyperglycemia regulate vascular A20 expression via O-GlcNAcylation-dependent ubiquitination and proteasomal degradation. This could be key to the pathogenesis of accelerated atherosclerosis in diabetes
    corecore