1,782 research outputs found

    A mechanical behavior law for the numerical simulation of the mushy zone in welding

    Get PDF
    The aim of this work is to propose a mechanical behavior law dedicated to the mushy zone located between the solid phase and the weld pool in welding. The objective is to take into account of the influence of the mushy zone in the simulation of welding in order to improve the computation of induced effects such as residual stresses

    AdS-Carroll Branes

    Get PDF
    Coset methods are used to determine the action of a co-dimension one brane (domain wall) embedded in (d+1)-dimensional AdS space in the Carroll limit in which the speed of light goes to zero. The action is invariant under the non-linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone field exhibits a static spatial distribution for the brane with a time varying momentum density related to the brane's spatial shape as well as the AdS-C geometry. The AdS-C vector field dual theory is obtained.Comment: 47 page

    Finite-distance singularities in the tearing of thin sheets

    Full text link
    We investigate the interaction between two cracks propagating in a thin sheet. Two different experimental geometries allow us to tear sheets by imposing an out-of-plane shear loading. We find that two tears converge along self-similar paths and annihilate each other. These finite-distance singularities display geometry-dependent similarity exponents, which we retrieve using scaling arguments based on a balance between the stretching and the bending of the sheet close to the tips of the cracks.Comment: 4 pages, 4 figure

    Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy.

    Get PDF
    Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting

    Spontaneous formation of optically induced surface relief gratings

    Get PDF
    A model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, is developped to describe single-beam surface relief grating formation in azopolymers thin films. It allows to explain the mechanism of spontaneous patterning, and self-organization. It allows also to compute the surface relief profile and its evolution in time with good agreement with experiments

    The four fixed points of scale invariant single field cosmological models

    Full text link
    We introduce a new set of flow parameters to describe the time dependence of the equation of state and the speed of sound in single field cosmological models. A scale invariant power spectrum is produced if these flow parameters satisfy specific dynamical equations. We analyze the flow of these parameters and find four types of fixed points that encompass all known single field models. Moreover, near each fixed point we uncover new models where the scale invariance of the power spectrum relies on having simultaneously time varying speed of sound and equation of state. We describe several distinctive new models and discuss constraints from strong coupling and superluminality.Comment: 24 pages, 6 figure

    Lie Bialgebra Structures for Centrally Extended Two- Dimensional Galilei Algebra and their Lie-Poisson Counterparts

    Get PDF
    All bialgebra structures for centrally extended Galilei algebra are classified. The corresponding Lie-Poisson structures on centrally extended Galilei group are found.Comment: Eq. (11) changed, 15 pages, LaTeX fil

    Quantum mechanical description of Stern-Gerlach experiments

    Get PDF
    The motion of neutral particles with magnetic moments in an inhomogeneous magnetic field is described in a quantum mechanical framework. The validity of the semi-classical approximations which are generally used to describe these phenomena is discussed. Approximate expressions for the evolution operator are derived and compared to the exact calculations. Focusing and spin-flip phenomena are predicted. The reliability of Stern-Gerlach experiments to measure spin projections is assessed in this framework.Comment: 12 pages, 7 eps figures included, revtex, submitted to PR

    Towards SDp-brane Quantization

    Full text link
    The quantum mechanical analysis of the canonical hamiltonian description of the effective action of a SDp-brane in bosonic ten dimensional Type II supergravity in a homogeneous background is given. We find exact solutions for the corresponding quantum theory by solving the Wheeler-deWitt equation in the late-time limit of the rolling tachyon. The probability densities for several values of p are shown and their possible interpretation is discussed. In the process the effects of electromagnetic fields are also incorporated and it is shown that in this case the interpretation of tachyon regarded as ``matter clock'' is modified.Comment: 15 pages, 3 eps figures, revtex

    Quark mass and condensate in HQCD

    Full text link
    We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory. We show that this field is responsible both for the spontaneous breaking of the chiral symmetry, and for the generation of (current algebra) quark masses, from the point of view of the bulk theory. As a by-product we show how this leads to the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5), (4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the pion mass rewritten in a clearer way, version published in JHE
    • 

    corecore