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AdS-Carroll branes

T. E. Clark"® and T. ter Veldhuis?®)

'Department of Physics and Astronomy, Purdue University, West Lafayette,
Indiana 47907-2036, USA

2Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands and Department of Physics
and Astronomy, Macalester College, Saint Paul, Minnesota 55105-1899, USA

(Received 18 May 2016; accepted 6 November 2016; published online 30 November 2016)

Coset methods are used to determine the action of a co-dimension one brane
(domain wall) embedded in (d + 1)-dimensional AdS space in the Carroll limit
in which the speed of light goes to zero. The action is invariant under the non-
linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone
field exhibits a static spatial distribution for the brane with a time varying mo-
mentum density related to the brane’s spatial shape as well as the AdS-C geom-
etry. The AdS-C vector field dual theory is obtained. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967969]

. INTRODUCTION

The symmetries of spacetime delimit the form of the action for fields on it. The familiar case
of Poincaré symmetric spacetime results in particle motion being restricted to the local forward
lightcone. This lightcone opens up to be the forward time half space in the Galilean limit in which
the speed of light ¢ — oo and instantaneous interaction is possible. On the other hand, as the
speed of light vanishes, ¢ — 0, the causal lightcone closes to be just the forward time half-line.
Such a contraction of spacetime is known as Carroll spacetime with symmetries generated by the
Wigner-Indnii contracted Poincaré algebra, ¢ — 0, to the Carroll algebra.> A particle in such a
spacetime must remain stationary as the time axis is the lightcone. This lack of motion can be found
by considering the ¢ — 0 limit of its Poincaré geodesic action. For a free particle moving in 1 + 1
dimensional Minkowski spacetime its action is given by

Ir= —mc2/ dr = —mcz/ Vdi? — dx?/c?
= —mc? / di~J1 = (t)2/c2. (1.1)

Introducing a Lagrange multiplier auxiliary velocity v(t)
Xx(t)/c = tanh v(z), (1.2)

the action becomes
1
= —mcz/dt cosh v(r) [1 - ch(t) tanh v(t)] . (1.3)

In order to take the Carroll limit ¢ — 0, the velocity is scaled by the speed of light v(z) = 2cw ()
yielding the action

I= —mcz/dt cosh2cw(r) [l - %x(r) tanh 2cw(t)] . (1.4)
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Letting ¢ — 0 the Carroll limit for the action I'c =T’/ mc? is obtained

rb::—l/lh[l—Zu(nxaﬂ. (1.5)

As expected there is no causal relation between different events along the particle’s trajectory and it
remains stationary x(¢) = 0 = w(z).>*

Extending the limiting procedure to membranes inserted into (d + 1)-dimensional Minkowski
spacetime, the ¢ — 0 contraction yields the Carrollian Nambu-Goto action for the brane. Such a
limit occurs in the case of effective field theory of tachyon brane condensation in which the tachyon
field rolls to the Carrollian limit.’ The Carroll brane action can be obtained from the contraction of
the Nambu-Goto action for a one-codimensional brane

I'ng = —0 / dx\|—~(-1)ddetg = —o / ddx\/—(—l)d det(n,0y — 0,90, ¢)
=—0 / déx 1 - 8, por P, (1.6)

where the (d + 1)-dimensional spacetime has been spontaneously broken to that of a d-dimensional
world volume by the formation of a domain wall in the additional dimension. These Poincaré
symmetries are compactly described by the invariant interval ds* = dx*n,,,dx* — dz* with z denot-
ing the one-dimensional covolume coordinate and x* with u=0,1,...,p = (d — 1) denoting the
d-dimensional world volume coordinates. Replacing z = ¢(x) it is obtained that ds? = dx*g,,,dx” =
dx* (1,v — 0,$0,¢) dx resulting in the (d + 1) dimensional space-time invariance of the Nambu-
Goto action (1.6) with brane tension o.

In order to implement the Carrollian contraction, Lagrange multiplier auxiliary fields V,,(x) are
introduced so that

tanh VV2
Ap =~V T (1.7)
\lv2
with V2 = V,n*"V, and x,, = (ct, x,,,) while §* = %. The action becomes
tanh VV?2
I'ng = —cor / dtdPx cosh VV2 |1+ |V, ) gt | . (1.8)
V2

Making the speed of light explicit V) = 2cw and V,,, = 2v,, form = 1,2,...,p = (d — 1), the Carrol-
lian limit ¢ — 0 of the action I'c = —(1/co)['vg = [ dtdPx Lc is obtained

) (1.9)
v

tan V4v? )
— P — P 2 m
T'c /dtd xLc /dtd x cos Vv [1 + —\/ﬁ (2wé + 20,0™9)

where, after separation of space and time coordinates, the spatial metric is just 6™". Only subscripts
Xm» Uy, and superscript derivatives 0™ = % will be used, with ¢ = 0%(15. In the case of a Goldstone

field, as is ¢, the leading term in the derivative expansion of the action (thin wall limit) is uniquely
fixed. The field equations are found to be
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_ 6Tc . |sinV4o?
©sw(x,t) Var |’

6T . tan V402

0= —5— =2cos Vo2 26"’vran—v - 0"p| x
OUm(x,1) Va2
tan V4v?2
X —PTns(U) + PLns(U) 6sm
[ V4v?
LW S™ tan V4v?
+2¢wv‘ >— €08 g2 (YR ,
v Va2

o6lc 0 sin V4v? 0 sin V4v?

== ——— w—— - — m- — | (110)
Op(x,1) ot Va2 0xm V4,2
where the transverse Pr,,(v) and longitudinal Py,,,(v) projection matrices are defined as
()
PTmn(U) =Omn — _271,
v
Ul
Prmn(v) = V;lzfl. (L.11)

Although informally obtained in the Introduction, these results also follow from the coset method
of Section II for the brane embedded in AdS — C space when the flat (Minkowski) space-time limit

2
m? = 01is taken and AdS — C ﬂ C, Carroll spacetime.
The field equations reflect the Carroll spacetime symmetries yielding ¢ = 0 from the w equa-
tion of motion, 6I'c/dw = 0 so that the brane’s initial spatial shape does not evolve as expected
from the collapse of the light cone in this limit. Having set ¢ = 0, the spatial components of v,,

obey the constraint 2v,, tan Vo2 _ 0™ ¢ as dictated by the v,, field equation, 6T'¢/dv,, = 0. Both field
\/_'

402
equations are consistent with the initial auxiliary velocity field equation (1.7) for ¢ — 0. Finally
the broken space translation symmetry in the (p + 1) direction yields the time variation of the
momentum density as given by the ¢ field equation 6I'¢/6¢ = 0. The momentum density IT is
defined by

. sin V4p?
MN=0Lc/0p =20 ———, (1.12)
Vi
while the derivatives of L with respect to the spatial derivatives of ¢ are denoted
i Va2
M, = 0Lc/30™$ = 20,220 (1.13)

V4yp?

Thus the ¢-field equation has the form of a current conservation equation. Indeed, the field equation
is the spontaneously broken translation current conservation equation for the Carroll spacetime. The
corresponding Noether current has the conserved form as above

0 0

6tn+ amem—O. (1.14)

The action, Equation (1.9), is invariant under the Carroll transformations, obtained by contract-

ing the Poincaré transformations as ¢ — 0, of the (d + 1)-dimensional Carroll spacetime which
include the unbroken d-dimensional worldvolume time and space translations, space rotations and
boosts with respective parameters €, a,,, ®mn, B and additionally, now non-linearly realized, the
broken space translation of the covolume which is just a ¢ shift symmetry, boosts in that direction
and rotations in a worldvolume-covolume plane with respective parameters £, A, k,,. Exploiting the
invariance of the Minkowski interval ds® = dx*1,,dx” — dz* under (d + 1)-dimensional Poincaré
transformations

x;\,lzxM+/lMNnNPxp+aM, (115)
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where x,; = (ct, X, z) with z = ¢(x) and Ap;y = —A s, the coordinate and field Poincaré transfor-
mations have the form
, 1 1
r=t- _A()nxn - _/1()z¢ + —ay,
c c c
Xy = Xm + CAomt — AmnXn — Amz® + am,
@' (x",t") = p(x,1) + c Aot — AgmXm + a. (1.16)

Contracting the Poincaré symmetry transformations to those of the Carroll symmetries requires a
rescaling of the time components of the transformation parameters so that

ag = Ce . /lOm = Cﬁm . /1()Z = 6‘2/1, (117)
while the purely spatial components are unchanged and are denoted as
{=a, , AUmn = —Amn , 2km = Ay (1.18)

The new parameters denote the Carroll transformation parameters. The ¢ — 0 Carroll spacetime
transformations of the coordinates and field ¢ are thus obtained and have the non-linear form (see
Appendix A for the coset method derivation and the AdS — C to Carroll spacetime C limit to obtain
Equations (1.19) and (1.21))

'=t+e—=21¢ — BnXm,
Xpy = X + A + Qun Xy — 20K,
&' (x", ) = p(x,0) + £ + 2K Xom. (1.19)

Applying these transformations to the auxiliary Lagrange multiplier field definition, Equation (1.7),
so that

tanh VV’2

with Vi(x",t") = Vy(x,1) + AV, (x,1), where AV, = (2cAw,2Av,,) yields the w and v, auxiliary
fields’ Carroll transformations

w'(x’,t") = w(x,1) [1 + Um';m (1 — V4p2cot V4vz)]
v
—Bimlm + AV4v2 cot V4v?2,
0 (X 1") = v (X,7) + Apnn + (V4vzcot V4v2Pr,,,(v) + PLm,,(v)) Kn. (1.21)

Since the time and space transformations involve functions thereof, the differential form of
Equation (1.19) yields the general coordinate transformation G = d(¢’,x")/d(t, x). That is, recom-

0,9'(x",t") = =V, (x",t") (1.20)

bining ¢ and x,, in the matrix X;; = (¢t,x,,) where now M,N =0,1,...,p, the transformations are
given by
dX,, = (dt’,dx,,)
= dXnG", = (dtG’) + dx,G",dtG°,, + dx,G",), (1.22)
with
ar axi\N
N _| ot ot
Gyv=|or ox,
axn axn M
1-216 2 N
_ 26K,
= n n . (1.23)
(_ﬁn -240 ¢) (6nm + @y — 20 ¢Km) M

The spacetime transformation Jacobian is dt’dPx’ = dtd” x det G. On the other hand, the action I'¢
is invariant under the Carrollian symmetry transformations, thus

Te = / dr'dPx' Li(x',t) = / dtdPx det GL (X', 1)
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TABLE L. Carroll spacetime transformations and Noether currents.

Transformation Parameter Noether currents
Time translations € H=T¢p-Lc
=cosV4v2+11,,,0™¢
hm = Hm¢
Space translations an T"=I10"¢

T = {9‘9{;?,% ¥¢-61 L
=6, [cosV4v2+ 11 +11,0" p] - 11,,0" ¢

Broken space translations 4 z=II
Zm =1l
Broken boosts A l=¢pH
Im :¢hm
Broken rotations Kn K" =2¢pT" +26"" x,I1
K, =2¢T,"+211,,6"" x,
Unbroken rotations Qrs M"S =x, TS —x,T"
MS =x,T,5—xsT,}
Unbroken boosts Bn B"=6""x,H
B :(Sn,rxrhm
= /dtd”x[c(x,t) =Tc, (1.24)
so that
LL(x',1) = det G L (x,1). (1.25)

For these Carrollian transformations, the Noether currents take the couplet form of time and
spatial component currents

m
P 6tLc (1.26)
Mo +6xnLe),, o

with 6t = ¢’ — ¢t and dx,, = x,, — x,,,, where the intrinsic transformation ¢ is defined as

8¢ = ¢'(x,1) — p(x,1) = Ap(x,1) — 6t — 6x,,0™ @ (1.27)

with the total variation given by

Ag(x,t) = ¢'(x',1') — ¢(x,1). (1.28)
Thus Noether’s theorem is (¢; = {¢,w,v,,})
ALc=Lo(x, 1) = Le(x,t)
0 0 06X, 6Fc
= EJO + m Lc - Le—— . 6% — b (1.29)

where the last term vanishes by the field equations 6Fc/ 0p; = 0. The conserved currents (before
use of the field equation constraints) are given by the pairs displayed in Table I. The action is
invariant as reflected by the vanishing or explicit cancellation of the AL + L¢ (‘95 L4 ‘3‘”"”) =0

Oxm
terms in Noether’s theorem for each of the Carrollian symmetry transformations. Hence 0™ Jy, =
ﬂfm m = —?7?690,-. The associated conserved charges are given by Q = [ dPxJy, where
0=-[s 0 J - dS — 0. Once again the time evolution of the momentum density is contained in
the broken translation current conservation equation and the invariance of the Lagrangian
. ol
0=T11+08™, = ——. (1.30)
9

In summary, the w-field equation of motion, Equation (1.10), yields the frozen spatial distribu-
tion of the domain wall as expected from the collapse of the lightcone to the positive time half-line
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in the Carrollian ¢ — 0 limit: %(l)(x,t) = 0. Along with this the Lagrange multiplier v,,-field equa-
tion of motion simply reproduces the constraint of the “inverse Higgs mechanism”!3

tan V4v? _
V42

These field equation constraints also follow directly from the Lagrange multiplier equation (1.7)
in the ¢ — O limit. Finally, although the brane is stationary, the momentum must vary in time in
order to balance the tension due to the domain wall’s local spatial shape where using the Lagrange

. (1.31)

20,

multiplier constraints so that ¢ = 0 and 2v,, do? _ 0™, it is found that
\/41)2
. omn
fe—gm|—2"¢ | (1.32)
V1 +35¢05¢

The purpose of this paper is to determine the Carrollian limit for branes in AdS spacetime.®’
The D = d + 1 dimensional AdS spacetime symmetry algebra is contracted in the Carroll limit,
¢ — 0. For a p-brane action in the alternate string Carrollian limit of Minkowski space see Ref. 8.
Application of the Carrollian limit to gravity and electromagnetism is discussed in Refs. 9 and 10.

In Section II coset methods'!~!3 are applied to the AdS — C algebra for the case of an embedded
co-dimension one p-brane (domain wall). The induced vielbeine, covariant derivatives, and spin
connections are determined using the Maurer-Cartan one-form associated with the p-brane coset
element. The action is constructed and shown to be invariant under the non-linearly realized
AdS — Cy4y41 broken to AdS — C,; symmetries by the brane embedding. The symmetry transforma-
tions are detailed in Appendix A. Alternatively, the AdS — C action can be obtained by making the
speed of light ¢ dependence explicit in the AdS;.; — AdS, case and taking the ¢ — 0 limit. Using
the results of Ref. 6, this approach is demonstrated in Appendix B.

From the action the field equations are determined. As expected due to the collapse of the
forward light cone to the positive time half-line, the spatial shape of the brane is stationary.
However, the spatial shape of the brane as well as the AdS — C geometry requires its conjugate
momentum density to be time dependent. Finally Noether’s theorem is applied to the broken space
translation symmetry in order to calculate the current and its conservation equation. Section III
presents the action in terms of a product of the background AdS — C; world volume vielbein and the
Nambu-Goto-Carrollian vielbein. This is then used to express the action in terms of its dual vector
theory. The results of the brane embedding are reviewed in Section I'V.

Il. AdS-CARROLL SPACE AND THE COSET METHOD

The AdS-Carroll spacetime is defined by the Wigner-Inonii contraction of the AdS symmetry
algebra for the speed of light vanishing, ¢ — 0. The isometry group of the D-dimensional AdS
space is given by the SO(2, D — 1) algebra of symmetry generators with the commutation relations

[MMN’MRS] - (nMRMNS _ pMSYNR 4 NS MR _ nNRMMS)’
[MMN,PL] - l(PMT]NL _ PNT]ML),
[PM,PN] = —im*M™MN 2.1
where L,M,N,R,S =0,1,2,...,D — 1 and the metric nyn = (+1,-1,-1,...,—1) with m? = 1/R?
and R the curvature of the AdS hyperboloid.

Introducing the explicit factors of the speed of light for the time related components, the time
component involved generators H and B4 are defined as

1
P'=-H,
C
1
MA% = ZBA, (2.2)

Cc
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while the spatial components remain unscaled P#, M43,
pA=pA
MAB = MAB, (2.3)
for A, B, C, D = 1,2,...,(D — 1) denoting the spatial indices. The SO(2,D — 1) algebra contracts
to the AdS-Carroll algebra in the ¢ — 0 limit
[MAB MCD] = +i ((SACMBD _ 6ADMBC + (SBDMAC _ 6BCMAD>
[MAB, BC] = (BA(SBC _ BB6AC) ,
[MAB,PC] =i (PA(SBC _ PBéAC> ,
[BA, PB] = +is*BH,
[H,PA] = +im*B*,
[P, PB] = —im*M"5, (2.4)
with remaining commutators vanishing.

A brane embedded in this AdS-Carroll spacetime will break its AdS — Cp symmetries down
to those of the d-dimensional worldvolume AdS — C; and its complementary covolume with the
remaining symmetries being spontaneously broken. In the case considered here, the insertion of
a domain wall results in a d = (1 + p) = (D — 1)-dimensional worldvolume and 1-dimensional co-
volume. Choosing the (p + 1) spatial direction as the broken translation symmetry direction, the
AdS-Carroll algebra can be expressed in terms of broken and unbroken generators with the gener-
ators H,P™ , M™" B™, with m,n = 1,2,...,p, as unbroken generators and prtl =z pp+lm =
%K m Bp+l = %L as the broken generators. M™" are the SO(p) worldvolume spatial rotation
generators while the worldvolume spatial translation generators P™ form an SO(p) vector with
time translations generated by H. The SO(p) vector B™ generates worldvolume boosts in the
m-direction. The translations in the covolume spatial direction are generated by Z while boosts in
that direction are generated by L. Finally broken rotations in the covolume-m worldvolume plane
are generated by the SO(p) vector K. Consequently the AdS — Cp-4.1 algebra can be expressed in
terms of these worldvolume and domain wall charges. The AdS — C4-p+1 worldvolume isometries
are given by the H, P, M™", B™ algebra (only nontrivial commutators listed)

[an MrS] — +l (6mrMns _ 6msMnr + 6nstr _ 6nrMmS)
[B™",P"] = +i6""H,
[H,P™] = +im*B™,
[P, P"] = —im*M™". (2.5)
The broken symmetry generators Z, L, K" commute with the unbroken generators above according
to their unbroken subgroup representation

[M™",Z] =0,
[M™,L] =0,
[M™ K| = —i (K™™' - K"6™),
[B™,Z] =0,
[B™,L]=0,

[B™,K"] = +i6""L,
[P™, 2] = %mzkm,
[P™.L] =0,

[P™,K"] = +2i6™"Z,
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[H,Z] = %mzL,
[H’ L] = O,
[H,K"]=0. (2.6)

Finally the broken charges Z,L,K™ commute amongst themselves to yield the charges of the
unbroken subalgebra

[Z,L] = —2iH,
[Z,K™] = —2iP™,
[L,K™] = —4iB™,
[K™, K" = 4iM™". 2.7)

The domain wall spontaneously breaks the AdS — Cp spacetime symmetries down to those
of the AdS — C,; worldvolume. As a derivative expansion, the leading form of the brane ac-
tion is uniquely determined. The Goldstone boson fields ¢(x,t) corresponding to the long wave-
length oscillations of the domain wall parameterize the coset coordinates along with the fields
associated with the broken boost and rotations, w(x,?) and v,,(x,t), respectively. The geometry
of the underlying AdS — C; worldvolume spacetime is described by the time ¢ and space x,,,
m=1,2,...,p=(d—-1), coordinate group elements. Overall these fields and spacetime coordi-
nates parameterize the AdS — Cp/ISO(p) coset element Q (note generators are defined with super-
scripts)

Q= eitHJrimemeiqﬁ(x,t)Zeiw(x,t)L+ivm(x,t)Km’ (28)

where ISO(p) is the unbroken subgroup with generators M and B™. The background worldvol-
ume coset Q € AdS — C4/ISO(p)

Q = eitH+imem (29)
is used to determine the AdS — C; background vielbeine and spin connections via the Maurer-
Cartan 1-form &

- - = 1
& =—-iQ'dQ = Gy H + dp P+ Ea)abM“” + @paB*. (2.10)

Expanding the 1-forms in terms of the coordinate differentials, the Maurer-Cartan 1-form be-
comes (with tangent space indices denoted a,b = 1,2,...,p and world volume indices denoted
mn=12,...,p)

& = (dté, + dx @) H + (dté’, + dx,é",)P*
+% (dtad!, + dx,@!,) M + (dt@), + dx,@},) B, (2.11)
where the background vielbeine are found to be
o sinh Vm2x?
T Ve
o= x_mt(l B sinhm)
’ V22 )
o sinh Vm2x2
T ( Vi
&, =0, (2.12)

with x% = x,,6™"x,, = X;uXm. The background spin connections are also obtained as

(=)

a

)PTna(x) + PLna(x)a

-t _
w,;, =0,

., 1 — cosh Vm?2x2
Wup = 2

) i )
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wOa = 2

. <l—cosh\/m2x2)x

X

15/ (2.13)

Woq = a

. _(1 — cosh Vm2x2)

x2

The AdS — C; background vielbein E ]‘f’{ is defined as the matrix relating the coordinate differ-
entials dXy = (dt,dx,), with M,N =0,1,...,p, to the covariant coordinate differentials Oa=
(@Of,@pq), with A,B =0,1,...,pas well as &g = @y and &, = @py, thus

Op=(On Gpg) = dXmEY

& 0
=(dt dx) m -m | (2.14)
ey en
that is
0 0 0 70
_ e e, =0 E, E =0
E]X = —m0 u—m = _rg u_m ’ (215)
e 0 €a E 0 E a
with det E = éoodete"’g, where a,b,m,n = 1,2,...,p.

On the other hand, the Maurer-Cartan 1-form for the domain wall breakdown of AdS — Cp —
AdS — C,4 can be constructed using the coset element Q

@ =—-iQ'dQ
1
=wpH + wWpa P+ wzZ + WL L + Wi K + EwMa,,M“b + wpaB. (2.16)

This yields the vielbeine, covariant derivatives of the fields, and spin connections. The vielbeine are
given in terms of the coordinate differentials according to

wy = dtey + dx e,
Wpg = dteoa + dxme’, 2.17)
with v? = v,6%%v,, = v,0, and
sin V4?2
)
sin V4v?
)

402 -1
+ cosh m2¢2(cos—v) wv,e”

v? @

0 [ sin V4v?

e, =200, ——|,
( Vdv? )

e’y = &'y cosh \/m?¢? + 2w6m¢(

m o ~am sin V4v?
e, = 20 ¢Ua (W)
+ cosh 4/ m?¢? [PTab(v) + (cos \/4_02)PLub(v)] é’. (2.18)

The AdS — Cp spacetime vielbein E”{ is defined as the matrix relating the coordinate differentials
dXp = (dt,dx,,) to the covariant coordinate differentials @4 = (wy,wpy), that is @y = wy and
@y = Wpgy, thus

@a = (wn Wpg) = dXmEY
e

e

0 eO
= (dt dxm)< 9 e,Z), (2.19)
0

a
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that is
E% E° PP
EM = <E,2 E;) :( B D (2.20)
0 a e 0 €a

The brane field’s covariant derivatives, V¢ and V"¢, are given by the wz one-form
wz =diV'¢ + dx,, V"¢, (2.21)
where

V¢ = ¢ cos V42,

el tan V4o?2
V"¢ = & cosh [ m2¢? cos V4v? — 10T pgsaby, bt i | (2.22)
cosh y/m?2¢? V42
Likewise the auxiliary fields w and v, have covariant derivatives determined by w; and wg,
wr =dtV'w + dx,,V"w,
Wia = dtV'v, + dx,,,V"™v,, (2.23)
where the derivatives are found to be
P sin V4uv? ) Vgl sin V4v? _,
Vw—w+(W—l)(w—w7)—Ww0ava
1 inh 4/ m2¢?
__m2¢w cosV 402500,
2 [m2¢?
in V4v? w00, in V4v?
V'w =0"w + MYTT g ﬁmw—wv ba ) _ 50 Ua_)(')"ava
\/402 v? Va2
1 inh \/m?2¢? 1- Va2
e ¥ el A 4 cos V4v2e'y + (1~ cos Vavh )w wenl,
2 Jm2g? v?
P sin V4v? . sinV40? _,
Vv, =, + (W - l)PTab(v)Ub + W&)ab()b,
sin V4v? sin V4u2
V"™"e =00, + | ———— = 1| Prap(0)0™vp + —@°
v, v ( \/402 ) rab()0"vp = @3, 0p
1 inh 4/ m2¢?
—§m2¢% [cos Va2 Prap(v) + Pras(v)] €. (2.24)
m=¢
Finally the spin connections are obtained from wj; and wp
Wpap = dtw! ) + dx,0lh,
inh A/m282 sin V42
= By + m2¢sm \m*¢= sin V4o
\m2¢? V4u?
- _ dv,vp, — dopug
+ (1 — Cos 41)2) PLac(v)wbc - PLbc(U)wuc -\ 2 5
v
wpg = dtw’, + dx 0"
_ 1 — cos V4v? - -
=gy + — 2 [dwv, — wdv, — @upwv — @ pRULVL]
sinh \/m?¢? sin V4v?
122 SN SO NAVT o 0udt — vadr ] (2.25)
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The AdS — Cp invariant action is constructed in terms of the vielbein E

FAdS_CD = /dtde.EAdS_cD(x,t) = /dldpdetE. (2.26)

The AdS — Cp transformations are non-linearly realized according to the group multipli-
cation properties involving the coset Q as detailed in Appendix A. The invariance of the ac-
tion follows from the transformation properties of the vielbein E. The Maurer-Cartan one-forms
transform according to which representation of the local /SO(p) tangent space transformations
that the associated operator belongs given by the unbroken subgroup element A(x,¢) obtained in
Appendix A. Using the coset transformation law gQ(x,7) = Q'(x’,#")h(x,t), the one-forms trans-
form as w'(x’,t") = h(x,t)w(x,t)h~ (x,t) — ih(x,t)dh~"(x,t), yielding

1
W' =wyH+ wp,P'+w,Z +w; L+ wk, K"+ Ew;wﬂbM“b + wpy,B*
= hoh™" —ihdh™!

=wphHh "'+ wphPh™' + wzhZh ™' + w hLh ™' + wg hK*h™!
1 1
+§wMath“bh‘l +wphBh" - zdeabM“l’ - de,B. (2.27)
Hence the one-forms’ variations are obtained

Wy = Wy — Wpaba,
Why = Wpp(Opa — Opa) = WppRy,
wy =wyz,
wy =W — Wgabas
w;(a = waRl:(IN
w;\/[cd = wMubR;clR;ﬂIJ - dec‘l’

1
w/Ba = wBbRI;,lz - dea + Echd(gc(Sda - addca)- (228)

The covariant coordinate differentials and vielbeine transform as

’ ’ ’ 1 O
(I)A:(a)H wpa):(a)y u)pb)(_eb R_l)
ba

e

/0 /0
= dX},E™ = (dr dx;n>(e,,2 ,,Z)
€ a
0 0
e, ¢ 1 0
=(dt dx)| 0 ) ", | = dXRERAB,, (2.29)
€y )\~ Ry,

with letters from the beginning of the alphabet denoting the tangent space transformation prop-
erties. From Appendix A the coordinate differentials transform according to the general coordinate
transformation

G G°
dXy, = (dt’ dxl,) = (dt dx,)| 0 " "] =dxnGY,, (2.30)
G G,

where the complicated general coordinate transformation matrix is denoted by GV, with letters
in the middle of the alphabet indicating world volume coordinate transformations. The spacetime
differentials have the Jacobian dt’dPx’ = dtdP x det G. Thus the vielbein E AX transforms as

E™M =G ™MyETAE, (2.31)

where the tangent space transformations have been denoted by
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B 1 0
A, = - (2.32)
-0, R,
Noting that det A = 1 so that det E” = det G~! det E, the action is invariant

;\ds—cD=/dt'd”x’detE’z/dtd”xdetGdetGildetE

= /dtd”x detE = FAdS—CD~ (2.33)
With the vielbeine in Equation (2.18) the AdS — Cp invariant action is found
TCadas-cp = /dtdpx detE = /dtdpx det(e™) [eoo - eoae_lfle'f)] , (2.34)
with (noting that &% ¢ = §4, &' = &%)
_ tan V4v?2
det E = det Ecosh” \| m2¢? cos V4v2 { cosh | m2¢? + D“¢2vaan—v
V4du?
. tan V4v?2
+28 1 (w — vaet ) L (2.35)
V4v?

The background AdS — C, spacetime measure is given by det £ = e‘oo det &" and the partially covar-

iant s'patial derivative D% = e“ﬁ%qﬁ. Note that the covariant derivatives of ¢, Equation (2.22),
are given by

Vi¢ = ¢cos Va2,

a N/4 2
V"¢ = & cosh /m2¢? cos V4v? _D% 26y, tan Vv~ , (2.36)
cosh /m?¢? V4v?

and can be used to covariantly constrain (as w’, = wz is invariant, Equation (2.28)) the field v,
equivalent to the constraint obtained from the v, field equation as well as constrain ¢ to be static as
obtained from the w field equation.

Indeed the field equations are obtained directly from the AdS — Cp invariant action. The
w-equation of motion is obtained as

0
= ——Taus-
Sw(x,t) AdS=Cp
9 tan V4v?
= (det &™)cosh? \/m2? cos Vau? [2(—¢) (uﬂ : (2.37)
ot Va2
The v,-field equation yields
0
= — T aus-
Soar.t) AdS=Cp
_ b tan V4v?
= 2 det Ecosh”*'\/m2¢? cos V4u? %—26“0‘1 b i | I
cosh /m2¢? V4v2
tan V4o? D
X [—2vp
V4v2 | cosh/m2¢p?

¢ tan V4v? tan V4o?
+ D¢ 20, [ ) - tan? Va2 + ) Py (0)
cosh /m2¢? V42 V4o?

D¢ tan V4o?2
20, 1P
+<cosh m2¢? ’ ( V4?2 >+ ) t (U)]
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0 tan V4
+2 (Eqﬁ) (det &", )cosh?y/ m2p? cos V4v? | ¢ 0( al:/EU )
N tan V4p2
rw-odya(1- 200 @238)
v V4o?
Finally the ¢-equation of motion is obtained
0
=2 s
0 5o0D) AdS—Cp
_ tanh +/m2¢?
= det Ecosh?”*!\/m2¢? cos V4v2(1 + p)m*¢ (M)
m2¢2
_ tan V4?2
_ r 242 2(ng"lagm
det Ecosh?”y/m2¢? cos Vdv2 (2&~ 20" vy) [( iz )PTba(v)+Pu,a(v)]
tan V4?2
0™ (det E¢'4)] cosh? \/ m2¢? cos V4v? | 2v, | ———
-l ) [ ( Va2 )]
tan V4u2
—(det&™)cosh? \m2¢p? cos V4022 (b — v,6%) | ———
0 V4p?
tan V4p?2
+(det &")cosh? \| m2¢p? cos V4v? (20,87) | ——
(2042%) Vap?
Valq tan V4-l)2
—(det &")cosh? \/ m?¢? cos 402( )2 w—vpel) |1 - | —]|. (2.39)
V o )2 T

Introducing the momentum density IT(x,?) as

ddetE tan V4v?
I(x,t) = AL det B ; "cosh?\[m2¢? cos V4v22an—v(w — 04€9), (2.40)
aé V42

and likewise defining the derivative of the Lagrangian with respect to the spatial derivatives of ¢ as
I (x, )

OdetE >tan Vdo?
M(x,0) = 2o = det Ecosh? | m2¢? cos Va2 e XV 2y, &1a (2.41)
00" A /—
the ¢-field equation is expressed as
_ 0lags—cp
—6p(x,1)

X

_ . p 20 smh\/m2¢2

= —I1 — ™11, + det Ecosh” | m2¢? cos V4 [ W m*¢
D4 tan V4?2 b'é Y tan V4v?

cosh \/m2¢2 V42 cosh \/ 2¢2 «&% V42

X{p+1+p

(2.42)

Applying the w-field equation implies that ¢ = 0. As expected there is no causal connection so
the field has a static spatial distribution. Applying this to the v,,-field equation yields the “inverse
Higgs mechanism”'? for the (spatial) components of the SO(p) vector field v,

D ap. [ tan V4v?
— =200 | —— .
cosh y/m2¢? V4v2

Since the ¢ covariant derivatives have the same form, Equation (2.22), the static nature of the
spatial distribution of the ¢ field and the inverse Higgs constraint for the spatial vector field v,

(2.43)
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could equivalently be covariantly imposed on the fields by w; = 0. Finally applying the first two
field equations to the ¢-field equation the momentum density time dependence is
obtained

IT+ 0™, =

det Ecosh®*D\/m2¢2 [ , sinh \/mzqﬁz}
m-¢ — X
\Jcosh2\mg? + DagDag Vm

DPpDb
wlpsi+p| 20290 1L (2.44)
cosh®\/m2¢?
with the spatial momentum I1,,, becoming
det Ecosh®*V/m2a2
I, = — o 2eos M slapay, (2.45)
\/cosh2\/m2¢)2 + DPpDL

The Noether current for the broken translation symmetry with parameter £ is more complex in
the background AdS — C, case and no longer simply produces the ¢ field equation as in the Carroll
space case but involves time variation of a related composite operator. Noether’s theorem has the
same form as Equation (1.29) (with Lags-c,, replacing L) with the broken space translation

variations given in Appendix A. In addition to these variations, the induced general coordinate
transformation matrix G = d(t’,x")/d(t, x) is obtained and hence the det G™!

, . tanh \/m?@®? sinh Vm?x?
. 2.46
)[’" O e Nmw (240

This yields the relation AL aqs-c + LAdS_C(%ét + d™6x,,) = 0 and Noether’s theorem is obtained

0
detG™! :1+(1+p+t5 + X, 0"

0=D+08"D,, (2.47)
where
D =116¢ + 6t Laas-cp
tanh /m2¢? sinh Vim2x2

= [T cosh Vm2x2 + m*¢ {me6m¢ —tI1,,0™ ¢

[12¢2 Va2
+t det Ecosh? D/ m2¢2 cos 4v2} ,

Dy, =11,,0¢ + 6xLaas-cp

tanh 2¢2 sinh Vm2x2 . .
= I1,, cosh Vm2x2 + m*¢ anh yim~¢” sinh Vm”x {th¢ )
[m2g? il
+(ILyxy — [, x,)0" ¢ — x, det Ecosh®*V [ m2¢? cos 41)2} . (2.48)

Applying the stationary constraint, ¢ = 0, the broken translation symmetry currents become
2 tanh /m2¢? sinh Vm?2x2
X
[m2g? Va2
, tanh y/m?¢? sinh Vm?2x2
[0) X
[m2¢? V22

X (det Ecosh*V\/m2¢? cos V4v? — Hmc')mqb) ,

D =11 |cosh Vim2x2 + m

.

+tm

D, =11,

cosh Vit + g BUINITY Sinh VIes? oo
[m24? V22
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2¢tanh \/m2¢? sinh V m2x2
[m24? 22

x(detEcosh<P+‘> m2¢? cos 402—Hn6"¢). (2.49)

The non-linear broken translation symmetry of AdS — Cp space no longer results in the ¢ field equation
directly but involves a composite operator current. In the Carroll spacetime limit m?> — 0, as applied to
the above currents, D — IT and D,, — II,, and the broken translation current conservation equation is
justthe ¢ field equation as the broken translation transformationis asimple ¢ field shift symmetry (1.19).

Similarly combining the L and K¢ one-forms in matrix notation as was done for the H and P one-
forms, Equations (2.19) and (2.20), the covariant derivatives are given as VMV, with V4 = (w,v,) and
Viw Vi, )

(2.50)

WgA = (wL (UKa) = dXMVMVA = <dt dxm) (V”‘w vy

Noting that under the non-linear transformations (2.30) of the coordinates and the transformations
of the covariant derivative one-forms with Equation (2.32) so that

1 0
Bip= (0] wi,)= (0L wkb) C1 | = aken?, 2.51)
_9b Rba
implying that
(VMVa) = GV V)AL, (2.52)

Combining the vielbeine into the matrix vielbein E as in Equation (2.19), its variation involves G
and A as shown in Equation (2.31). Thus calculating the trace of VV using E~!

(E7' VM) = AMA(ET'D VMYL)AG, (2.53)
an invariant is obtained
(Tr[E7'VV]) = Tr[E7'VV]. (2.54)

Applying the w and v,, field equation constraints, ¢ = 0 = 0, and implicitly the Equation (2.43),
the remaining ¢ field equation (2.39) can be shown to be given by the trace of the covariant deriva-
tive of w and v,. The inverse vielbein with the ¢ = 0 constraint explicit so that €%, = 0 is found to be

0 1 0
E4 = (2.55)
M — la n 0-1 —la |° :
—e Geey e
where e‘lg 0 ! with €% 0= =¢ » cosh 4/m2¢? and the inverse submatrix e~'% is found to be

-la _
= _m2¢2 [Pras(v) + cos V4u2Ppap(v)] &7} (2.56)

both with the field constraints having been used. Multiplying these matrices together yields the
vector field covariant derivative trace

Ti[E7'VV] = &5 'Viw + e 4V ™y, (2.57)

where again the constraints have been used, particularly v, = 0. Applying the covariant derivatives
which are recalled in Equations (2.24) with again the constraints applied finally yields the trace

1 tanh /m?¢?
Tr[E~'VV] = —=m?¢(1 + p) cos V4vzw
2 m2¢?
1 -1 sin V4v?
r— (W = p@dg,va)—F——
cosh +/m2¢? ( V4p?

e
oy, %th(v)+cos \/41)2PLab(v)]). (2.58)
U
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Using the background one-forms, Equation (2.12), and background spin connections, Equation (2.13),
it is found that

0™ [deteele4] = dete|é%) - pay,6P9], (2.59)
with & = &7'9¢", so that &% =& '9¢",. Applying this and the field constraints to the ¢ field

Equation (2.39) and exploiting the background spin connections @/, and @ , it is found that (2.39)
(with ¢ = 0 = ,) can be written as
_ Olaas—c,

0= e —2det Ecosh"*P)\/m2¢? Tr[E~'VV]. (2.60)

lll. THE NAMBU-GOTO CARROLLIAN VIELBEIN AND THE DUAL VECTOR ACTION

Returning to the unconstrained fields and combining the vielbeine in matrix form E, it and
the Lagrangian, det E, can be factorized into a product of the background AdS,; world volume
vielbein, E ]‘Z , times the Nambu-Goto Carrollian vielbein, N i, as such

EM = EM N5, (3.1)
with Equation (2.20)
EM = (::g ZO;;‘) (3.2)
and background AdS, vielbein
EM = (iz EO‘;HZ ) (33)

and correspondingly the inverse background world volume vielbein

~0-1
_ e 0
E7A = 0 . 3.4
M (_e—lgéroe—ool g——lr(}zi ( )

This yields the Nambu-Goto Carrollian vielbein N5 = E~'EEM

N NO)
NEB =0 ""a (3.5)
R
with
Ny =5'eh
in?2
=t l+2we‘AZ)t¢SH21—v],
U

NG =&"'2[e - 22" e})
in2 2w—1
=2w va Db - 5D ] + etwoy (%) ,
Ny =& e’,
in2
2D a“g 2
v
Nb =& 'b e —ehety e’ ]
in2
=0, Slgv L[DPh - D' + e [Prya(v) + cos 20 PLya(v)]. (3.6)

where the notation uses the simplifying expressions

. 242
e = MeOhNMOT = cogsh [m2¢? = coshmg,
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0 .
D! "éo ! = e"1 N
=125 a[¢ X
D = e“%ﬁ—¢ =& 50",
m
X2 = X 0™ X0 = XnXms

v = Vo2 = \ogo,, (3.7)

where recall the shorthand expressions such as v, = 5%y, and likewise x,, = 6™"x,, are used and
recall the background component vielbeine

Xqt
glagm = ¢ (l—eo)—eo,

m®~ 0
e——la = e 0 lPTam(x) + PLam(x)
e_oo = M (3.8)
m2x2
Hence the AdS — Cp action is given by
Taas—cp, = / dtdPx det E = / dtdPx det E det N, (3.9)
where det E' = & det &, and
det N = (det N%) [N — NONTaND]. (3.10)
Letting N9 = uqup, + €* (Prap(v) + c0s 20 PLqp(v)) the inverse submatrix N~'¢ is
N5 = auqoy + e [Prap(v) + BPrap(v)], (3.11)
where
—e A
a= ,
[tqvy + €A cos 2v]
(e + upvp)
= . 3.12
B [uqvg + €4 cos2v] (3-12)
For the case at hand
2
e =2(D" - &4D'¢) = Sin 20 (3.13)

and so u,v, = 2 (Z)“¢ e D! ¢) Uy “‘"02” The submatrix determinant, det N9, is also determined to
be

tan 2
det N% = ePAcos 20 |1 +2¢74 (D - D' ) vg a; "] . (3.14)
v
Putting all these expressions together yields the Nambu-Goto Carrollian determinant
in2 2
det N = cosh’m¢ [cosh me cos 20 + 2 (D“¢va s v) +2(w—v,e et D ¢sm v] . (3.15)

Thus with det E = e‘oo dete” = (e'OO)p , the det E = det E det N Lagrangian is in agreement with the
Lagrangian obtained in Equation (2.35). The invariant action is obtained

TCags—cp = / dtdPx detE = / dtdPx det E det N

/ dtdP xéy(det &)er* [e cos2v +2 (1)“¢Ua sin 20)

+2(w — vee” lag " D'p

m

sm21}] (3.16)
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As in the AdS case® a vector field dual formulation of the AdS — Cp, action can be obtained by

introducing a vector field F;, with M = 0,1,2,...,p

_sin 2v

Fiy = 2det E— VAE™Y,
with space-time component fields
Va = (w, va)
and
Fy = (fs fm)-

It is useful to introduce the singular tangent space metric

0 O
hAB —

as well as the singular background AdS — C, metric

~MN —_ M AB N
GMN = EMpABEN,

(o 0
\0 ETSPET

{0 o0
_Ogmn'

Note that det G = 0 and hence has no inverse. Using the singular metric it is found that
FuG""Fy = fug™" fa-

In terms of component fields it is obtained that

Fyy = P\ o qer pH02 (w —vee e )ey! ’
fm 2

v vae '

Inverting Equation (3.17)

v, ( 1 )F EM
A== | EME 4>
2d€tE%

so that the component fields are related by

v () 1 1+ fmé
A Vg ZdCtE% fme_n; .

Hence the useful expressions are found
1

v? = 0,6“"0p = Vol Vg = —————— F, GM N Fy

(2det E#522)
1
= ffmgmnfn’
(2 detEs“z‘%)2
while
det £ cos 20 = \/(det E) - FyyGMNFy
and

VAE S0M ¢ = (w — v,e 287 D¢ + 0,0
=V, D4,

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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where DA¢ = E-1A0M ¢ with oM = (9*,0™) and the partial covariant derivatives D’¢ = &' and
Da¢ _ e—laam¢

The determinant of the Nambu-Goto Carrollian vielbein, Equation (3.15), can be written in
terms of ¢ and Fj; as

det EdetN = P4 (eA\/ (detE)? — FyyGMNFy + FM6M¢) . (3.29)

Following Ref. 6, introduce the function 4(¢) so that

M pePA@) = gM p(p) = —(paM(ﬁ (3.30)
and hence dh(¢) = ePA®), the AdS — Cp action now has the form, after integration by parts,
Tadas—cp = / dtdP x e(”+l)A(¢)\/(det E) — FyyGMNFy — h(¢)6MFM] . (3.31)
The scalar field ¢ equation of motion follows (d = (1 + p))
6T aas-cp dh [, , sinhmé¢ . .
—D — 0= — |dm*¢p———L+/(det E)2 — FyyGMNFy — 0MFy | . 3.32
50 d¢_m¢ o \/(e) M N M (3.32)

The ¢ equation of motion can be enforced by introducing the Lagrange multiplier field L yielding
the action

Tags-cp = / didPx [\/(detE)2 FyGMNFy (T(¢)+Ld ¢Smh(;"¢) LaMFM], (3.33)
with
T(9) = P4 _ h(g)dm fmf¢ (3.34)

Thus we see that the previous ¢ equation of motion, now coming from the L field equation, results
in the L dependent terms cancelling and the ¢ field itself being expressed in terms of Fj;. Thus
using this equation of motion

OMF,
sinh m¢ = M

dm\/(det E)2 - FRGRSFS
_ S 40" fm
dmy(det E)? ~ f,g7 f,

the T(¢) can be written in terms of Fy;, so adopting the notation 7(¢) = T(¢(FM)) — T(F), the dual
vector form of the action is

(3.35)

rAdS—CD = / dtd”xT(F)\/(det E_‘)Z - FMG_MNFN

- [ drarxr (s g Er - g, (3.36)

along with Equations (3.35) and (3.34) to determine ¢ = ¢(F) and T(F).

The equivalence runs in reverse as well, introducing a Lagrange multiplier L to enforce
Equation (3.35) yields the action of Equation (3.33) where T(¢) is given in Equation (3.34). The
fields ¢, Fy, and L are independent. The ¢ equation of motion allows L to be eliminated as
ol aas-cp,/0¢ = 0 implies

1 _AdT

L=-—se¢ = h(). (3.37)
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Upon substitution into I's4s-c,, Equation (3.33), yields Equation (3.31). The definition of Fj; in
terms of V4, Equation (3.17), can be applied along with (recalling that V2 = Voh4BVy = 1?)

1 _ _
cos2V = cos20 = ———+/(det E)2 — FyyGMNFy. 3.38
(detE)\/( )= Fu N (3.38)

Thus substituting this into Equation (3.31) and integrating by parts results in the Nambu-Goto-
Carrollian action, note Equation (B58),

sin2V

Tads—cp = / dtd? x det EePA®) [eA(¢) cos2V + VAET oM | . (3.39)
This can be expanded in terms of component fields w and v, to obtain the Nambu-Goto Carrollian
action of Equation (3.16).

IV. CONCLUSION

A p-brane with codimension one was embedded in D = d + 1-dimensional AdS-Carroll space
by means of the coset method. The vanishing speed of light, ¢ — 0, Wigner-Intnii contraction
of the AdS space SO(2,D — 1) symmetry algebra was obtained and the AdS — Cp/ISO(p) coset
element, Equation (2.8), was formed along with the unbroken background AdS — C,;/ISO(p) coset
element Equation (2.9). The non-linearly realized spontaneously broken AdS — Cp — AdS — Cy
symmetry transformations were obtained in Appendix A. The invariant brane action was found us-
ing the Maurer-Cartan one-forms. Expanding the one-forms in terms of coordinate differentials, the
vielbeine and background vielbeine were obtained. These component vielbeine were re-assembled
as a Carroll spacetime matrix vielbein, Equations (2.14) and (2.19). The AdS — Cp SO(2,D — 1)
invariant action was shown to be given by the determinant of this matrix vielbein

Tags-cp = / dtdPx det E @.1)

with det E expressed in terms of the component fields in Equation (2.35).

The w, v,, and ¢ field equations followed directly from the action. The w and v, equa-
tions of motion implied the inverse Higgs mechanism constraints yielding the static nature of
the spatial shape of the ¢ field, ¢ = 0, as expected from the contraction of the light cone to the
time axis as ¢ — 0, and the auxiliary vector field v, and the spatial derivatives of ¢ were related,
Equation (2.43). Both of these constraints can alternatively be imposed by the invariant ¢-covariant
derivative constraint wz = 0. The canonical momentum density defined in Equation (2.40) on the
other hand exhibits time variation related to the shape of the brane, ¢(x,,), as well as the AdS — C
geometry. Finally the ¢-field equation can be written in terms of the covariant derivatives of the
auxiliary fields w and v, as Equation (2.60).

In the flat Minkowski space limit, m?> — 0, the AdS — Cp results describe the p-brane embedded
inaCarroll spacetime, AdS — Cp — Cp. These results agree with those of the more informally derived
results discussed in the Introduction. In addition the broken translation symmetry Noether current in
the AdS — C case, Equation (2.47), with currents Equation (2.49), goes over to the Carroll space cur-
rents z = I, z,, = I1,,, found in Table I, and the Carrollian component vielbeine can be obtained as
the m? — 0 limit of Equation (2.18) and correspondingly the m? — 0 action I'c = [ dtdPx L¢ with

det E 0 L and action I'c of Equation (1.9).

The AdS — Cp vielbein E has the product form of the AdS — C; background vielbein E times
the Nambu-Goto-Carroll vielbein N, E = EN, as expressed in Equations (3.1)-(3.7). The p-brane
action can be re-formulated in terms of its dual vector field Fj, action, Equation (3.36), with
functions ¢ = ¢(F), Equation (3.35), and T(F), Equation (3.34). Likewise the dual action can be
reformulated to yield the brane Nambu-Goto-Carrollian action Equation (3.39) with component
form Equation (3.16).

An equivalent approach to obtain the p-brane action is to expose the speed of light in the
already known AdS(4.1) — AdSy brane action results and take the ¢ — 0 Carrollian limit thereof.
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This method was presented in Appendix B where the Maurer-Cartan one-forms and Nambu-
Goto vielbein of Ref. 6 were used to obtain the AdS action with the speed of light parameter,
Equation (B58). The Carrollian limit was then taken to obtain the coset method component action
(3.16) results.
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APPENDIX A: AdS — C TRANSFORMATIONS

Using the group multiplication laws as applied to the coset €2, the non-linearly realized AdS —
Cp transformations are determined from

gQ(x,1) = Q'(x',t")h(x,1), (A1)
where the infinitesimal AdS — Cp transformations form the group elements
g= ol€H piamP™ jilZ fiAL HikmK™ S amnM™" ,iBmB™ (A2)
while the transformed coset element is given by
QI(X, [l) — eit’H+ix;,”Pmei¢/(x’,t’)Zeiw’(x/,t/)L+v;n(x’,t’)Km (AS)
The h(x,t) is an element of the invariant /SO(p) subgroup
h(x,1) = e%é}mn(x,t)Mm”eiHm(x,t)Bm (Ad)

with parameters 6,,,, and 6,, that also depend on g. The transformations of the spacetime coordi-
nates and fields are found to be non-linearly realized

=g |1 4 Sk (1 — Vm2x2 coth Vm2x2)

42
5, . tanh \/m2¢? sinh Vm?2x?
—-m°{e
[m24? V22
mXm tanh 242 242
oy SOOI osh Va2 - — X
X m2p? sinh Vm?2x2
tanh /7282 Vm2x2
sV coth Vi - 12 SN VMY _ g
\m2¢?  sinh Vm?2x?2
, 5, tanh+/m?¢? sinh Vm?x?
X, =Xp |1l =m“lo
[m24? V22
+ (\'1112x2 coth Vm2x2Pr,,,.(x) + PLm,,(x)) an
tanh \/m2¢? |  Vm2x2
\m2¢? | sinh Vm?2x2

¢'(x',t") = ¢(x,1) + £ cosh Vim2x2 + 2k X

:| + O pnXn

Pron(x) + cosh Vm2x2Py (%) | K1,

sinh Vm?2x?2
Vm2?
tanh Vm?2x2/2

_2¢

w'(x,1") = w(x,t) + €m>Xmvm
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, tanh Vm?x2/2 V4v2cot V4o?
Mty + A ————
Vm?2x2 cosh \/m?¢?
mXm tanh [ 111242
+/12¢U )é (szxztanh Vm2x2/2) tanh ym7¢”
X 1m2¢2
+-m¢ SR Y [wx 12} + V42 cot V4vz(t—wx 121 )
2 “coshym2¢?  Vm2x2 v v
1 [1 - V4v2Zcot V4u?]

+w > U Primn(x) + cosh Vim2x2 P, (x)]kn
cosh \/m2¢? v
) tanh 4/m?¢? \ [ tanh Vm?2x?/2
—M 1K U@
[m2g? V222

x2

ik V4v2cot V4v2\ [ cosh Vm2x2 - 1
"\ cosh \ m2p? '
2

m 2
0 (X 1") = v (X,7) + Apnn + T(amxn — Gy X;)———— tanh Vm2x2/2v,

Vm?2x?
m? 1 sinh Vm2x2
t— Vdv2cot VA4v2Pr () + Prmn(0)| x5
2 7 coshy/m2¢?  Vm2x2 [ ]

242
e ta“f/l_ “2’;‘7’ \/% tanh VIZx2 2k (Ktn) — Km(n0)
m m-x

+ (VA2 Ot VAP (1) + Prun(®)) ————
cosh \/m2¢?
(PT,,r(x) + cosh VmZxZPLnr(x)) Kr. (A5)

The invariant /SO(p) subgroup parameters 6,,,, and 6,, are also obtained

2
2
Omn = Upn + m?(amxn — apX;)———— tanh Vm2x2/2

Vm?x?
) 1 sinh Vm?2x?2 tan Vo?
-m-{ (XmUn = XpUm) —=—

cosh/m2¢?  Vm?2x2 Vo2
tanh m2¢2 2
-m*¢ anh ym-¢ tanh Vm2x2/2(x,,k, — XpKum)
262 m2x2
2tan\/ﬁ 1
Vo2 cosh+/m2¢?
- (Pan(x) + cosh 'm2x2PLnr(x)) KrUm] >
O = B , tanh Vm2x2/2 S tanh Vm?2x2/2
= Bm — €M Xpy————— + mtay——————
NP Va2
ot tan Vo2 1 sinh Vm?2x?2
Vo2 cosh/m2¢2  Vm2x2
tanh /m2¢2 2 t 2 1
Ay BN IS tanh Vim2x2/2 + 2v,, an Vo?
Vm2¢r  Vm2x? Vo2 cosh A/m2¢?
tanh \/m?¢> 2
PP L tanh V226,
22 Nm2x2

[(PTm,(x) + cosh szszLmr(x)) KrUn

(tom = Xpw)
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tan Vo2 1 cosh Vm2x2 — 1
Vo2 cosh \/m2¢? x2
ow tan Vo2 1
Vo2 cosh/m2¢?

The symmetry transformations for D = d + 1 Carrollian spacetime as given in Equations (1.19)
and (1.21) and as well as the induced local rotations and boosts

+2t0, (K X))

(PTmn(x) + cosh szszLmn(x)) Kn. (A6)

A ! 0 (A7)
\-6, R,
with R} = 6,,,, — 0,,,,, where the induced infinitesimal rotation has parameter 6,,,,,,
tan Vo2
Onm = Upm — 2an—v (Knvm - Kmvn) s (AS)
Vo?
while the unbroken induced boosts have parameter 6,,,
tan Vo2

0, = B +2(Av, — wky) (A9)

\/ﬁ

are obtained as the m? — 0 limit of these AdS — Cpp — AdS — C, transformations.

APPENDIX B: AdS <22 Ads - C
The purpose of this appendix is to make the speed of light ¢ explicit in the AdS;.; — AdSy

isometry algebra and associated coset elements in order to implement the ¢ — 0 limit directly, re-
producing the action of Sections II and III. Returning to the SO(2,d) symmetry algebra for AdS;.1,
Equation (2.1), where now the SO(2,d) — SO(2,d — 1) isometry algebra for AdS,.1 — AdSy is
denoted with hatted operators so that
PM = pPM for M = 0,1,2,...,p,
prl=_7 (B1)

and

MMN = gMN for M,N =0,1,2,. .esDs

MPHM = M for M =0,1,2,...,p, (B2)
where now M,N =0,1,2,...,p labelling only the AdS; components while the (p + 1)'h compo-

nents are separated into Z and K™. The SO(2,d) algebra becomes that used in Equation (B.5) of
Ref. 6

[N IRS] = —j (pMBYINS — pMSPINR o NS MR _ ) NRyMS)
[MMN PLY = i (PMyNL — pNyML),
MMV RE] = i (RMpNE = RNpMLY
[MMN Z]1=0 . [PM RN =inMNZ,
[P, PN] = —im*M™MN | [PM 7] = -im* KM,
[KM KN =im™MN . [Z,RM]=iPM. (B3)
To make the speed of light explicit introduce the generators
SO |
P'=-H,
¢
pm=pm
N 1
K= —L,

2c
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. 1

Km = sz,
7=-Z,
MmO — le’
C
M™ =M™, (B4)

where the spatial indices are labelled by m,n = 1,2,...,p = (d — 1). Hence the SO(2,d) algebra of
Equation (B3) is as given in Equations (2.5)-(2.7) except for the four commutators involving the
explicit factor of the speed of light, which are now

[B™ B"] = —ic*M™" , [B™,L] =ic*K™,
s =1c N 5 = —ZIC .
[B™, H] =ic*P™ [H,L] = -2ic*Z (B5)

Define the operators PM, MMV Z and KM with the explicit speed of light factors removed

H
M _
KM = L
k™)

as

Z = Z’
0 -B"
MMV = . B6
The relation to the hatted operators is given succinctly by
PM = CMpM,
KM =20 KM,
Z = _Za
MMN = MRS CT, (B7)
with
c 0
= . B8
N (0 5mn) B9

In terms of these operators, the SO(2, d) algebra of Equation (B3) becomes

[MMN MRS] ( MRMNS MSMNR+I’1NSMMR—I’[NRMMS),
[MMN pL] = (PMaNL _ pN ML)
[MMN gcL] = (7(1\4 NL _geNpMLy,
MMY,Z] = . [PMKN] = 2inMN Z,
[P PN = =i MY [PMZ] = Y,
(KM KN = dimMY . [zt = 2P, (BY)
where the metric has the form of a (p + 1) X (p + 1) diagonal matrix denoted n™ "™
c? 0
nMN = cMpRSCH = (0 s (B10)

Rather than use the coset method directly with this form of the algebra, the Maurer-Cartan
one-forms found using the hatted form of the algebra can be converted to one-forms with the
explicit powers of ¢ exhibited and then the ¢ — 0 limit performed. First the coset elements for the
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two sets of operators are identified. Consider the coordinates
Xpm = (xo, xm) =(ct, xm) (B11)
and
Xy, xpn) (B12)

thatis X, = AnC 711\14\/_ Hence the coset elements

eHMPM i XM (B13)
Likewise let $(£)Z = ¢(X)Z so that
P = ¢19Z, (B14)
and ¢ = —¢. Also define the components of i, as
Om = (B0, 0m) = (2cw, 20,) (B15)
and those of V), as
Ve = (w, o). (B16)
Thus Vi = 30xC™Y so that
MR — GV KM (B17)

Finally equating the unbroken subgroup operators 8y, y MMN = @y y MMN with

Ors = C ' YounCY (B18)
so that
ops= (> % (B19)
76, 6,
while
P 0 —0,\ [0 —co, B20)
MN= ém émn B Cem Hmn

and the subgroup elements are equal

L h M N i MN
e2MNMTT — 3O N M (B21)
These coset elements so identified,
N o AM i5 A M . M . arM
O = elXMP el¢ZevaK -0 = elXMP ez(/)ZetVMK , (B22)

allow their respective Maurer-Cartan one-forms to be related, recalling the one-forms w = —iQ7'dO
and ® = —iQ1dQ with d = dﬁMﬁ = dt% + dxm% = dXM% = d, the one-forms are equal
w = @. Expanding them in terms of the generators with tangent space indices A,B =0,1,...,p
(recall world indices M,N = 0,1,...,p also)

W=wAP + wzZ + wgaKA + %wABMAB (B23)
and
A+ 077 + OxaKt + %@ABM*‘B, (B24)
and utilizing Equation (B7) the Maurer-Cartan one-forms are related

A ~—1B
wa=wpC 7,

wz = —cDZ,
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wgaA = ECDKBC_I/?
wap = dcpC'CCP. (B25)

These yield the relations for the component one-forms and the eventual ¢ — 0 relation to the
one-forms of Section II. The explicit factors of ¢ relating the component one-forms are, with
a,b=12,...,p,

1,
Wo = —wo,
C
Wq = Dg,
Wz = —Wwz,

2
1.
Wa( = —Wa0,
C
Wap = Dgbp. (B26)

The relation to the AdS — C one-forms of Section II is found in the ¢ — 0 limit of the above, for
example, wy = lwo ﬂ [):8
Similarly for the background one-forms for which Q = eiFAPt = Q) = oIXaP?

Expanding in terms of the generators

and so @ = @.

1
w = LDAPA + ECDABMAB (B27)

and

)

El)
"'U
S»
evl
<
S

(B28)

NIH

and using the relations for the one-forms
WA= Lf)BC_lB,
@ap = GcpC'CCP, (B29)

these yield the component background one-form equalities

_ 1.
wo = —Wo,
c
Wy = (f)as
_ 1.
Wa0 = —Wqa0,
c
Wap = (f)abs (B30)
with the AdS — C background one-forms of Section II found in the ¢ — 0 limit, for example
Wy = l(1.2)0 —c—_—)(l) Wy.

c
Applying these c-factor conversions to the Maurer-Cartan one-form @4 found in Equation

(2.10) of Ref. 6 for charges defined with upper indices, as is the convention here,

smh Vo2
NEY

with the corresponding background one-form & 4 of Ref. 6

A [ sin Vm?2x2

A

wA =

UAd¢ + cosh ﬂ 2¢2 [PTAB(U) + cosh \/_PLAB(U)] n a)c, (B31)

wc =

— PTCD<92)+PLCD(2)] nPtdsg, (B32)
m-<x
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yields the resulting w4 one-form wg = @ BC’L{g

sinh V4V?2
Vay2

with the projection operators

wp =

2V,d + cosh \[m?¢? [PrA(V) + cosh VaV2P B(v)| @, (B33)

VaVen©B
By — cs _ VAVc
PraV)=Prac(V)n=" = m,

PAVY=6F-P, 5V, (B34)
and where 0% = d,n”8bp = 4VpnPEVE = 4V2. In analogous fashion the background one-form is
derived @4 = OpC'8
sin Vm2X?2

Vm?2X?

with £2 = £y M N &y = XynMN Xy = X2 Likewise from Equation (2.10) of Ref. 6

@4 = PAX) + P X)) | dX o, (B35)

N JUA tanh V92
Oy = cosh Vo2 | g — cosh Al m2d26 an Boy Y07 | (B36)
Vo2
from which it is found that
tanh V4V?2
wz = —Dz = cosh V4V2 |d¢ + cosh | m2¢? (Z)AnABZVBan— . (B37)
Vay?

The vielbein 81‘;{ is defined by relating the covariant differentials w4 to the coordinate differen-
tials dX

Likewise
Op =diyEY (B39)
and so the vielbeine are related through the one-forms w4 = © BC“f as
&M = CMENCIB, (B40)
Similarly for the background one-forms
Wp = dXMSM,
Bp=diyEM, (B41)
and hence the related vielbeine
EM = cMENCT'E. (B42)

Since the one-forms w4 and w4 are already obtai_ned, the vielbeine can be read off from their
forms. From Equation (B35) the background vielbein 81‘;{ is seen to be equal to

sin Vm2X?2
Vm2X?

Equation (B33) with d¢ = dXMﬁqﬁ = dXy0M¢ and @ = dXpE” provides the vielbein EM

&M = PrAX) + P (X). (B43)

sinh V4V?2 0 _
&Y T 2as Yot cosh \[m2g2 [P A(V) + cosh Vav2p, B(V)| £, (B44)

The speed of light can be taken to zero to obtain the results of Sections II and III. Displaying
the component one-forms and vielbeine, it is found for the background one-forms and vielbeine
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that
Wy = dt8%+dxm8’6!
=0 it sinh Vm2x2 . tXom 1 sinh Vm?2x2
< SR VA DI LN B L
Va2 "\ X2 V2l
= oy = dté) + dx,e’,
@q = dt&% + dx,,E™
c—0 sinh Vm?2x2
5 dxyy | —
Vm?2x?

= @py = dté, + dx,,é". (B45)

PTam(x) + PLam(x))

Thus the vielbeine components of Section II, Equations (2.12) and (2.14), have been obtained. In
short this ¢ — 0 limit is

EM 20 M. (B46)

Proceeding in a similar manner for the one-forms and vielbeine their ¢ — 0 limits are obtained
as those of Section II

wy = dt&Y+ dx, &

c—0 sin 41)2 _
- ———2wd'¢ + cosh | m2p2E°
V4u? 0

sin V4v?2 -
+dx,, | ———2wd" ¢ + cosh | m2p2E"
[ V4p? 0

wup

+ cosh 4/ m2¢? (cos 402 - 1) —ZS’Z]
v

wy = dtES + dx, E,

we = dt&° + dx,E™
=0 sin V4u2 sin V4u2
00,06 | + d | 20, 0™
V4p? ( V4ap?

+ cosh /m2¢? [Prub(v) + cos V4v2PLab(v)] S";)

= wpq = dtE° + dx,,E". (B47)

Thus the vielbeine components of Section II, Equations (2.18)-(2.20), have been obtained. In short
this ¢ — 0 limit is

M 0 M. (B48)

The ¢ — 0 limit of the ¢ covariant derivatives is found from the w z one-form Equation (B37)
wz = diV'¢+dx,, V"¢
2 (¢ cos V4v2)

tan Vo2
+dxy cos Vau? |37 — cosh A m2¢220,em 2 L2
V42

= wyz =dtV'¢ +dx,, V"¢, (B49)

which agree with the ¢ covariant derivatives in Section II Equation (2.22). Thus the same AdS — C
results are obtained as in the use of the coset method.
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The Nambu-Goto vielbein, N i, is defined by factoring the background vielbein from E“A;{ SO
that

EM = EMKB (B50)
and so
NB = E7'B EM. (B51)

Correspondingly &% = EYNE and N§ = E7'% M. Exploiting the relations between E Eand &,
&, it is obtained that
NE = chN2C'C. (B52)

Thus det N = det N and from Equations (B40) and (B42) det& = det £ as well as det& = det E.
Consequently the AdS invariant action, Equation (3.18) of Ref. 6 rescaled by —o/c, ['sys =
f dtdPx det E, is written in terms of det & as

det £ = det £ det N = det & det N = det &. (B53)
Utilizing Equation (3.19) or (3.20) of Ref. 6 for the det N
. - tanh Vo2 E-1A oMb
det N = cosh?/m2@2 cosh Vo2 | 1 — (ﬁA an \2/”_) ul 9\ (B54)
Vo2 cosh 4/ m2¢?
and converting q§ U and % to ¢, V4 and X, as well as using the relation
E 4 = CRET'RCY] (B55)
in order to find that
2 0 . - 0
CBE'S =-&'8 — ¢, B56
AT M oRu ¢ MoXy (B56)

the det NV is found

det N' = cosh?\/m2¢? cosh V4V2

B57)

o—1A aM
1+(2vAtanh '4‘/2)( & W0"d )]

V4Vv2 cosh y/m2¢?

Thus the AdS;.+1 — AdS,; brane embedded action I'yg4s is obtained (note Equation (3.20) of
Ref. 6)

FAdS = /ddX detSdetN

- tanh V4V?2
=/ddX det Ecosh?\|m2¢? cosh V4V2 |1 + ZVAan—
V4V2

: (B58)

L g 0,
M
cosh \/m2¢? 0Xm
in which the explicit factors of ¢ are in the background vielbein & and its inverse &7'4, (note

the form of Equation (3.39) in which the ¢ — O limit is already taken). Further, taking the ¢ — 0
limit, the explicit component fields can be exhibited from Equations (B12) and (B16) to obtain

Equation (3.15) of Section III for det N 2% det N and likewise det& < det £ = & dete”.

Thus T'agus 29 I'aas—c,, and Equation (3.16) is obtained.
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