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AdS-Carroll branes
T. E. Clark1,a) and T. ter Veldhuis2,b)
1Department of Physics and Astronomy, Purdue University, West Lafayette,
Indiana 47907-2036, USA
2Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands and Department of Physics
and Astronomy, Macalester College, Saint Paul, Minnesota 55105-1899, USA

(Received 18 May 2016; accepted 6 November 2016; published online 30 November 2016)

Coset methods are used to determine the action of a co-dimension one brane
(domain wall) embedded in (d + 1)-dimensional AdS space in the Carroll limit
in which the speed of light goes to zero. The action is invariant under the non-
linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone
field exhibits a static spatial distribution for the brane with a time varying mo-
mentum density related to the brane’s spatial shape as well as the AdS-C geom-
etry. The AdS-C vector field dual theory is obtained. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967969]

I. INTRODUCTION

The symmetries of spacetime delimit the form of the action for fields on it. The familiar case
of Poincaré symmetric spacetime results in particle motion being restricted to the local forward
lightcone. This lightcone opens up to be the forward time half space in the Galilean limit in which
the speed of light c → ∞ and instantaneous interaction is possible. On the other hand, as the
speed of light vanishes, c → 0, the causal lightcone closes to be just the forward time half-line.
Such a contraction of spacetime is known as Carroll spacetime with symmetries generated by the
Wigner-Inönü contracted Poincaré algebra, c → 0, to the Carroll algebra.1,2 A particle in such a
spacetime must remain stationary as the time axis is the lightcone. This lack of motion can be found
by considering the c → 0 limit of its Poincaré geodesic action. For a free particle moving in 1 + 1
dimensional Minkowski spacetime its action is given by

Γ = −mc2


dτ = −mc2
 

dt2 − dx2/c2

= −mc2


dt


1 − ẋ(t)2/c2. (1.1)

Introducing a Lagrange multiplier auxiliary velocity v(t)
ẋ(t)/c = tanh v(t), (1.2)

the action becomes

Γ = −mc2


dt cosh v(t)

1 − 1

c
ẋ(t) tanh v(t)


. (1.3)

In order to take the Carroll limit c → 0, the velocity is scaled by the speed of light v(t) = 2cw(t)
yielding the action

Γ = −mc2


dt cosh 2cw(t)

1 − 1

c
ẋ(t) tanh 2cw(t)


. (1.4)
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Letting c → 0 the Carroll limit for the action ΓC = Γ/mc2 is obtained

ΓC = −


dt [1 − 2w(t)ẋ(t)] . (1.5)

As expected there is no causal relation between different events along the particle’s trajectory and it
remains stationary ẋ(t) = 0 = ẇ(t).3,4

Extending the limiting procedure to membranes inserted into (d + 1)-dimensional Minkowski
spacetime, the c → 0 contraction yields the Carrollian Nambu-Goto action for the brane. Such a
limit occurs in the case of effective field theory of tachyon brane condensation in which the tachyon
field rolls to the Carrollian limit.5 The Carroll brane action can be obtained from the contraction of
the Nambu-Goto action for a one-codimensional brane

ΓNG = −σ


ddx

−(−1)d det g = −σ


ddx


−(−1)d det(ηµν − ∂µφ∂νφ)

= −σ


ddx


1 − ∂µφ∂µφ, (1.6)

where the (d + 1)-dimensional spacetime has been spontaneously broken to that of a d-dimensional
world volume by the formation of a domain wall in the additional dimension. These Poincaré
symmetries are compactly described by the invariant interval ds2 = dxµηµνdxν − dz2 with z denot-
ing the one-dimensional covolume coordinate and xµ with µ = 0,1, . . . ,p = (d − 1) denoting the
d-dimensional world volume coordinates. Replacing z = φ(x) it is obtained that ds2 = dxµgµνdxν =
dxµ

�
ηµν − ∂µφ∂νφ

�
dxν resulting in the (d + 1) dimensional space-time invariance of the Nambu-

Goto action (1.6) with brane tension σ.
In order to implement the Carrollian contraction, Lagrange multiplier auxiliary fields Vµ(x) are

introduced so that

∂µφ = −ηµνVν
tanh
√

V 2
√

V 2
, (1.7)

with V 2 = Vµη
µνVν and xµ = (ct, xm) while ∂µ = ∂

∂xµ
. The action becomes

ΓNG = −cσ


dtdpx cosh
√

V 2

1 + *

,
Vµ

tanh
√

V 2
√

V 2
+
-
∂µφ


. (1.8)

Making the speed of light explicit V0 = 2cw and Vm = 2vm for m = 1,2, . . . ,p = (d − 1), the Carrol-
lian limit c → 0 of the action ΓC = −(1/cσ)ΓNG =


dtdpxLC is obtained

ΓC =


dtdpxLC =


dtdpx cos

√
4v2


1 +

tan
√

4v2
√

4v2

�
2wφ̇ + 2vm∂mφ

�
, (1.9)

where, after separation of space and time coordinates, the spatial metric is just δmn. Only subscripts
xm, vm and superscript derivatives ∂m = ∂

∂xm
will be used, with φ̇ = ∂

∂t
φ. In the case of a Goldstone

field, as is φ, the leading term in the derivative expansion of the action (thin wall limit) is uniquely
fixed. The field equations are found to be
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0 =
δΓC

δw(x, t) = 2φ̇


sin
√

4v2
√

4v2


,

0 =
δΓC

δvm(x, t) = 2 cos
√

4v2 *
,


2δnrvr

tan
√

4v2
√

4v2
− ∂nφ


×

×


tan
√

4v2
√

4v2
PTns(v) + PLns(v)


δsm+

-

+2φ̇
wvsδ

sm

v2 cos
√

4v2 *
,

tan
√

4v2
√

4v2
− 1+

-
,

0 =
δΓC

δφ(x, t) = −
∂

∂t


2w

sin
√

4v2
√

4v2


− ∂

∂xm


2vm

sin
√

4v2
√

4v2


, (1.10)

where the transverse PTmn(v) and longitudinal PLmn(v) projection matrices are defined as

PTmn(v) = δmn −
vmvn

v2 ,

PLmn(v) = vmvn

v2 . (1.11)

Although informally obtained in the Introduction, these results also follow from the coset method
of Section II for the brane embedded in AdS − C space when the flat (Minkowski) space-time limit

m2 → 0 is taken and AdS − C
m2→0−−−−−→ C, Carroll spacetime.

The field equations reflect the Carroll spacetime symmetries yielding φ̇ = 0 from the w equa-
tion of motion, δΓC/δw = 0 so that the brane’s initial spatial shape does not evolve as expected
from the collapse of the light cone in this limit. Having set φ̇ = 0, the spatial components of vm

obey the constraint 2vm
tan
√

4v2√
4v2
= ∂mφ as dictated by the vm field equation, δΓC/δvm = 0. Both field

equations are consistent with the initial auxiliary velocity field equation (1.7) for c → 0. Finally
the broken space translation symmetry in the (p + 1) direction yields the time variation of the
momentum density as given by the φ field equation δΓC/δφ = 0. The momentum density Π is
defined by

Π ≡ ∂LC/∂φ̇ = 2w
sin
√

4v2
√

4v2
, (1.12)

while the derivatives of LC with respect to the spatial derivatives of φ are denoted

Πm = ∂LC/∂∂
mφ = 2vm

sin
√

4v2
√

4v2
. (1.13)

Thus the φ-field equation has the form of a current conservation equation. Indeed, the field equation
is the spontaneously broken translation current conservation equation for the Carroll spacetime. The
corresponding Noether current has the conserved form as above

∂

∂t
Π +

∂

∂xm
Πm = 0. (1.14)

The action, Equation (1.9), is invariant under the Carroll transformations, obtained by contract-
ing the Poincaré transformations as c → 0, of the (d + 1)-dimensional Carroll spacetime which
include the unbroken d-dimensional worldvolume time and space translations, space rotations and
boosts with respective parameters ϵ, am, αmn, βm and additionally, now non-linearly realized, the
broken space translation of the covolume which is just a φ shift symmetry, boosts in that direction
and rotations in a worldvolume-covolume plane with respective parameters ζ, λ, κm. Exploiting the
invariance of the Minkowski interval ds2 = dxµηµνdxν − dz2 under (d + 1)-dimensional Poincaré
transformations

x ′M = xM + λMNη
NPxP + aM, (1.15)
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where xM = (ct, xm, z) with z = φ(x) and λMN = −λNM, the coordinate and field Poincaré transfor-
mations have the form

t ′ = t − 1
c
λ0nxn −

1
c
λ0zφ +

1
c

a0,

x ′m = xm + cλ0mt − λmnxn − λmzφ + am,

φ′(x ′, t ′) = φ(x, t) + cλz0t − λzmxm + az. (1.16)

Contracting the Poincaré symmetry transformations to those of the Carroll symmetries requires a
rescaling of the time components of the transformation parameters so that

a0 = cϵ , λ0m = cβm , λ0z = c2λ, (1.17)

while the purely spatial components are unchanged and are denoted as

ζ = az , αmn = −λmn , 2κm = λmz. (1.18)

The new parameters denote the Carroll transformation parameters. The c → 0 Carroll spacetime
transformations of the coordinates and field φ are thus obtained and have the non-linear form (see
Appendix A for the coset method derivation and the AdS − C to Carroll spacetime C limit to obtain
Equations (1.19) and (1.21))

t ′ = t + ϵ − 2λφ − βmxm,

x ′m = xm + am + αmnxn − 2φκm,
φ′(x ′, t ′) = φ(x, t) + ζ + 2κmxm. (1.19)

Applying these transformations to the auxiliary Lagrange multiplier field definition, Equation (1.7),
so that

∂ ′µφ
′(x ′, t ′) = −V ′µ(x ′, t ′) tanh

√
V ′ 2

√
V ′ 2

, (1.20)

with V ′µ(x ′, t ′) = Vµ(x, t) + ∆Vµ(x, t), where ∆Vµ = (2c∆w,2∆vm) yields the w and vm auxiliary
fields’ Carroll transformations

w ′(x ′, t ′) = w(x, t)

1 +

vmκm

v2

(
1 −
√

4v2 cot
√

4v2
)

−βmvm + λ
√

4v2 cot
√

4v2,

v ′m(x ′, t ′) = vm(x, t) + αmnvn +
(√

4v2 cot
√

4v2PTmn(v) + PLmn(v)
)
κn. (1.21)

Since the time and space transformations involve functions thereof, the differential form of
Equation (1.19) yields the general coordinate transformation G = ∂(t ′, x ′)/∂(t, x). That is, recom-
bining t and xm in the matrix XM = (t, xm) where now M,N = 0,1, . . . ,p, the transformations are
given by

dX ′M = (dt ′,dx ′m)
= dXNGN

M = (dtG0
0 + dxnGn

0,dtG0
m + dxnGn

m), (1.22)

with

GN
M =

*...
,

∂t ′

∂t
∂x ′m
∂t

∂t ′

∂xn

∂x ′m
∂xn

+///
-

N

M

= *
,

1 − 2λφ̇ −2φ̇κm
(−βn − 2λ∂nφ) (δnm + αnm − 2∂nφκm)

+
-

N

M

. (1.23)

The spacetime transformation Jacobian is dt ′dpx ′ = dtdpx det G. On the other hand, the action ΓC
is invariant under the Carrollian symmetry transformations, thus

Γ
′
C =


dt ′dpx ′L ′C(x ′, t ′) =


dtdpx det GL ′C(x ′, t ′)
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TABLE I. Carroll spacetime transformations and Noether currents.

Transformation Parameter Noether currents

Time translations ϵ H =Πφ̇−LC

= cos
√

4v2+Πm∂mφ

hm =Πmφ̇

Space translations an T n =Π∂nφ

T n
m =

∂LC
∂∂mφ ∂nφ−δ n

mLC

= δ n
m[cos

√
4v2+Πφ̇+Πr∂

rφ]−Πm∂nφ

Broken space translations ζ z =Π

zm =Πm

Broken boosts λ l =φH
lm =φhm

Broken rotations κn K n = 2φT n+2δnrxrΠ

K n
m = 2φT n

m +2Πmδnrxr

Unbroken rotations αr s Mr s = xrT
s− xsT r

M r s
m = xrT

s
m − xsT r

m

Unbroken boosts βn Bn = δnrxrH
B n

m = δ
nrxrhm

=


dtdpxLC(x, t) = ΓC, (1.24)

so that

L ′C(x ′, t ′) = det G−1LC(x, t). (1.25)

For these Carrollian transformations, the Noether currents take the couplet form of time and
spatial component currents

JM = *
,

Πδφ + δtLC

Πmδφ + δxmLC

+
-M=(0,m)

(1.26)

with δt = t ′ − t and δxm = x ′m − xm, where the intrinsic transformation δφ is defined as

δφ ≡ φ′(x, t) − φ(x, t) = ∆φ(x, t) − δt φ̇ − δxm∂
mφ (1.27)

with the total variation given by

∆φ(x, t) ≡ φ′(x ′, t ′) − φ(x, t). (1.28)

Thus Noether’s theorem is (ϕi = {φ,w, vm})

∆LC = L ′C(x ′, t ′) − LC(x, t)
=

∂

∂t
J0 +

∂

∂xm
Jm − LC

∂δt
∂t
− LC

∂δxm

∂xm
+

δΓC
δϕi

δϕi, (1.29)

where the last term vanishes by the field equations δΓC/δϕi = 0. The conserved currents (before
use of the field equation constraints) are given by the pairs displayed in Table I. The action is
invariant as reflected by the vanishing or explicit cancellation of the ∆LC + LC

(
∂δt
∂t
+

∂δxm
∂xm

)
= 0

terms in Noether’s theorem for each of the Carrollian symmetry transformations. Hence ∂M JM =
∂
∂t

J0 +
∂

∂xm
Jm = − δΓC

δϕi
δϕi. The associated conserved charges are given by Q =


dpxJ0, where

Q̇ = −

S→∞ J⃗ · dS⃗ −→ 0. Once again the time evolution of the momentum density is contained in

the broken translation current conservation equation and the invariance of the Lagrangian

0 = Π̇ + ∂m
Πm = −

δΓC
δφ

. (1.30)

In summary, the w-field equation of motion, Equation (1.10), yields the frozen spatial distribu-
tion of the domain wall as expected from the collapse of the lightcone to the positive time half-line
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in the Carrollian c → 0 limit: ∂
∂t
φ(x, t) = 0. Along with this the Lagrange multiplier vm-field equa-

tion of motion simply reproduces the constraint of the “inverse Higgs mechanism”13

2vm
tan
√

4v2
√

4v2
= ∂mφ. (1.31)

These field equation constraints also follow directly from the Lagrange multiplier equation (1.7)
in the c → 0 limit. Finally, although the brane is stationary, the momentum must vary in time in
order to balance the tension due to the domain wall’s local spatial shape where using the Lagrange

multiplier constraints so that φ̇ = 0 and 2vm
tan
√

4v2√
4v2
= ∂mφ, it is found that

Π̇ = −∂m


∂mφ
1 + ∂sφ∂sφ


. (1.32)

The purpose of this paper is to determine the Carrollian limit for branes in AdS spacetime.6,7

The D = d + 1 dimensional AdS spacetime symmetry algebra is contracted in the Carroll limit,
c → 0. For a p-brane action in the alternate string Carrollian limit of Minkowski space see Ref. 8.
Application of the Carrollian limit to gravity and electromagnetism is discussed in Refs. 9 and 10.

In Section II coset methods11–13 are applied to the AdS − C algebra for the case of an embedded
co-dimension one p-brane (domain wall). The induced vielbeine, covariant derivatives, and spin
connections are determined using the Maurer-Cartan one-form associated with the p-brane coset
element. The action is constructed and shown to be invariant under the non-linearly realized
AdS − Cd+1 broken to AdS − Cd symmetries by the brane embedding. The symmetry transforma-
tions are detailed in Appendix A. Alternatively, the AdS − C action can be obtained by making the
speed of light c dependence explicit in the AdSd+1 → AdSd case and taking the c → 0 limit. Using
the results of Ref. 6, this approach is demonstrated in Appendix B.

From the action the field equations are determined. As expected due to the collapse of the
forward light cone to the positive time half-line, the spatial shape of the brane is stationary.
However, the spatial shape of the brane as well as the AdS − C geometry requires its conjugate
momentum density to be time dependent. Finally Noether’s theorem is applied to the broken space
translation symmetry in order to calculate the current and its conservation equation. Section III
presents the action in terms of a product of the background AdS − Cd world volume vielbein and the
Nambu-Goto-Carrollian vielbein. This is then used to express the action in terms of its dual vector
theory. The results of the brane embedding are reviewed in Section IV.

II. AdS-CARROLL SPACE AND THE COSET METHOD

The AdS-Carroll spacetime is defined by the Wigner-Inönü contraction of the AdS symmetry
algebra for the speed of light vanishing, c → 0. The isometry group of the D-dimensional AdS
space is given by the SO(2,D − 1) algebra of symmetry generators with the commutation relations

�
MMN ,MRS

�
= −i

�
ηMRMNS − ηMSMNR + ηNSMMR − ηNRMMS

�
,

�
MMN ,PL

�
= i

�
PMηNL − PNηML

�
,

�
PM,PN

�
= −im2MMN , (2.1)

where L,M,N,R,S = 0,1,2, . . . ,D − 1 and the metric ηMN = (+1,−1,−1, . . . ,−1) with m2 = 1/R2

and R the curvature of the AdS hyperboloid.
Introducing the explicit factors of the speed of light for the time related components, the time

component involved generators H and BA are defined as

P0 =
1
c

H,

M A0 =
1
c

BA, (2.2)
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while the spatial components remain unscaled PA, M AB,

PA = PA,

M AB = M AB, (2.3)

for A, B, C, D = 1,2, . . . , (D − 1) denoting the spatial indices. The SO(2,D − 1) algebra contracts
to the AdS-Carroll algebra in the c → 0 limit

�
M AB,MCD

�
= +i

�
δACMBD − δADMBC + δBDM AC − δBCM AD

�
,

�
M AB,BC

�
= −i

�
BAδBC − BBδAC

�
,

�
M AB,PC

�
= −i

�
PAδBC − PBδAC

�
,

�
BA,PB

�
= +iδABH,

�
H,PA

�
= +im2BA,

�
PA,PB

�
= −im2M AB, (2.4)

with remaining commutators vanishing.
A brane embedded in this AdS-Carroll spacetime will break its AdS − CD symmetries down

to those of the d-dimensional worldvolume AdS − Cd and its complementary covolume with the
remaining symmetries being spontaneously broken. In the case considered here, the insertion of
a domain wall results in a d = (1 + p) = (D − 1)-dimensional worldvolume and 1-dimensional co-
volume. Choosing the (p + 1)th spatial direction as the broken translation symmetry direction, the
AdS-Carroll algebra can be expressed in terms of broken and unbroken generators with the gener-
ators H,Pm,Mmn,Bm, with m,n = 1,2, . . . ,p, as unbroken generators and Pp+1 ≡ Z, M p+1, m ≡
1
2 Km, Bp+1 ≡ 1

2 L as the broken generators. Mmn are the SO(p) worldvolume spatial rotation
generators while the worldvolume spatial translation generators Pm form an SO(p) vector with
time translations generated by H . The SO(p) vector Bm generates worldvolume boosts in the
m-direction. The translations in the covolume spatial direction are generated by Z while boosts in
that direction are generated by L. Finally broken rotations in the covolume-m worldvolume plane
are generated by the SO(p) vector Km. Consequently the AdS − CD=d+1 algebra can be expressed in
terms of these worldvolume and domain wall charges. The AdS − Cd=p+1 worldvolume isometries
are given by the H,Pm,Mmn,Bm algebra (only nontrivial commutators listed)

[Mmn,Mr s] = +i (δmrMns − δmsMnr + δnsMmr − δnrMms) ,
�
Mmn,Bl

�
= −i

�
Bmδnl − Bnδml

�
,

�
Mmn,Pl

�
= −i

�
Pmδnl − Pnδml

�
,

[Bm,Pn] = +iδmnH,

[H,Pm] = +im2Bm,

[Pm,Pn] = −im2Mmn. (2.5)

The broken symmetry generators Z,L,Km commute with the unbroken generators above according
to their unbroken subgroup representation

[Mmn, Z] = 0,
[Mmn,L] = 0,
�
Mmn,K l

�
= −i

�
Kmδnl − Knδml

�
,

[Bm, Z] = 0,
[Bm,L] = 0,

[Bm,Kn] = +iδmnL,

[Pm, Z] = i
2

m2Km,

[Pm,L] = 0,
[Pm,Kn] = +2iδmnZ,
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[H, Z] = i
2

m2L,

[H,L] = 0,
[H,Kn] = 0. (2.6)

Finally the broken charges Z,L,Km commute amongst themselves to yield the charges of the
unbroken subalgebra

[Z,L] = −2iH,

[Z,Km] = −2iPm,

[L,Km] = −4iBm,

[Km,Kn] = 4iMmn. (2.7)

The domain wall spontaneously breaks the AdS − CD spacetime symmetries down to those
of the AdS − Cd worldvolume. As a derivative expansion, the leading form of the brane ac-
tion is uniquely determined. The Goldstone boson fields φ(x, t) corresponding to the long wave-
length oscillations of the domain wall parameterize the coset coordinates along with the fields
associated with the broken boost and rotations, w(x, t) and vm(x, t), respectively. The geometry
of the underlying AdS − Cd worldvolume spacetime is described by the time t and space xm,
m = 1,2, . . . ,p = (d − 1), coordinate group elements. Overall these fields and spacetime coordi-
nates parameterize the AdS − CD/ISO(p) coset element Ω (note generators are defined with super-
scripts)

Ω ≡ eitH+i xmPm
eiφ(x, t)Zeiw(x, t)L+ivm(x, t)Km

, (2.8)

where ISO(p) is the unbroken subgroup with generators Mmn and Bm. The background worldvol-
ume coset Ω̄ ∈ AdS − Cd/ISO(p)

Ω̄ ≡ eitH+i xmPm
(2.9)

is used to determine the AdS − Cd background vielbeine and spin connections via the Maurer-
Cartan 1-form ˜̄ω

˜̄ω ≡ −iΩ̄−1dΩ̄ = ω̄HH + ω̄PaPa +
1
2
ω̄abMab + ω̄BaBa. (2.10)

Expanding the 1-forms in terms of the coordinate differentials, the Maurer-Cartan 1-form be-
comes (with tangent space indices denoted a,b = 1,2, . . . ,p and world volume indices denoted
m,n = 1,2, . . . ,p)

˜̄ω = (dtē0
0 + dxmēm0)H + (dtē0

a + dxnēna)Pa

+
1
2
�
dtω̄t

ab + dxrω̄r
ab

�
Mab +

�
dtω̄t

0a + dxrω̄r
0a

�
Ba, (2.11)

where the background vielbeine are found to be

ē0
0 =

sinh
√

m2x2
√

m2x2
,

ēm0 =
xmt
x2

*
,
1 − sinh

√
m2x2

√
m2x2

+
-
,

ēna = *
,

sinh
√

m2x2
√

m2x2
+
-

PTna(x) + PLna(x),

ē0
a = 0, (2.12)

with x2 = xmδ
mnxn = xmxm. The background spin connections are also obtained as

ω̄t
ab = 0,

ω̄r
ab =

*
,

1 − cosh
√

m2x2

x2
+
-

�
δsaδ

r
b − δsbδ

r
a

�
xs,
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ω̄t
0a =

*
,

1 − cosh
√

m2x2

x2
+
-

xa,

ω̄r
0a = − *

,

1 − cosh
√

m2x2

x2
+
-

tδ r
a . (2.13)

The AdS − Cd background vielbein ĒM
A is defined as the matrix relating the coordinate differ-

entials dXN = (dt,dxn), with M,N = 0,1, . . . ,p, to the covariant coordinate differentials ˜̄ωA =

(ω̄H , ω̄Pa), with A,B = 0,1, . . . ,p as well as ˜̄ω0 = ω̄H and ˜̄ωa = ω̄Pa, thus

˜̄ωA = (ω̄H ω̄Pa) = dXM ĒM
A

= (dt dxm) *
,

ē0
0 0

ēm0 ēma
+
-
, (2.14)

that is

ĒM
A =

*
,

ē0
0 ē0

a = 0
ēm0 ēma

+
-
= *
,

Ē0
0 Ē0

a = 0
Ēm

0 Ēm
a

+
-
, (2.15)

with det Ē = ē0
0 det ēma, where a,b,m,n = 1,2, . . . ,p.

On the other hand, the Maurer-Cartan 1-form for the domain wall breakdown of AdS − CD →
AdS − Cd can be constructed using the coset elementΩ

ω̃ = −iΩ−1dΩ

= ωHH + ωPaPa + ωZZ + ωLL + ωKaKa +
1
2
ωMabMab + ωBaBa. (2.16)

This yields the vielbeine, covariant derivatives of the fields, and spin connections. The vielbeine are
given in terms of the coordinate differentials according to

ωH = dte0
0 + dxmem0 ,

ωPa = dte0
a + dxmema, (2.17)

with v2 = vaδ
abvb = vava and

e0
0 = ē0

0 cosh


m2φ2 + 2wφ̇ *
,

sin
√

4v2
√

4v2
+
-
,

em0 = ēm0 cosh


m2φ2 + 2w∂mφ *
,

sin
√

4v2
√

4v2
+
-

+ cosh


m2φ2 *
,

cos
√

4v2 − 1
v2

+
-
wvaēma,

e0
a = 2φ̇va *

,

sin
√

4v2
√

4v2
+
-
,

ema = 2∂mφva *
,

sin
√

4v2
√

4v2
+
-

+ cosh


m2φ2

PTab(v) + (cos

√
4v2)PLab(v)


ēmb. (2.18)

The AdS − CD spacetime vielbein EM
A is defined as the matrix relating the coordinate differentials

dXM = (dt,dxm) to the covariant coordinate differentials ω̃A = (ωH ,ωPa), that is ω̃0 = ωH and
ω̃a = ωPa, thus

ω̃A = (ωH ωPa) = dXMEM
A

= (dt dxm) *
,

e0
0 e0

a

em0 ema
+
-
, (2.19)
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that is

EM
A =

*
,

E0
0 E0

a

Em
0 Em

a

+
-
= *
,

e0
0 e0

a

em0 ema
+
-
. (2.20)

The brane field’s covariant derivatives, ∇tφ and ∇mφ, are given by the ωZ one-form

ωZ = dt∇tφ + dxm∇mφ, (2.21)

where

∇tφ = φ̇ cos
√

4v2,

∇mφ = ēma cosh


m2φ2 cos
√

4v2 *
,

ē−1a
n

∂
∂xn

φ

cosh


m2φ2
− 2δabvb *

,

tan
√

4v2
√

4v2
+
-
+
-
. (2.22)

Likewise the auxiliary fields w and va have covariant derivatives determined by ωL and ωKa,

ωL = dt∇tw + dxm∇mw,

ωKa = dt∇tva + dxm∇mva, (2.23)

where the derivatives are found to be

∇tw = ẇ + *
,

sin
√

4v2

√4v2 − 1+
-

(
ẇ − w

vav̇a

v2

)
− sin

√
4v2

√
4v2

ω̄t
0ava

−1
2

m2φ
sinh


m2φ2

m2φ2
cos
√

4v2ē0
0,

∇mw = ∂mw + *
,

sin
√

4v2

√4v2 − 1+
-

(
∂mw − w

va∂
mva

v2

)
− sin

√
4v2

√
4v2

ω̄m
0ava

−1
2

m2φ
sinh


m2φ2

m2φ2


cos
√

4v2ēm0 +
(1 − cos

√
4v2)

v2 wvaēma

,

∇tva = v̇a + *
,

sin
√

4v2

√4v2 − 1+
-

PTab(v)v̇b + sin
√

4v2
√

4v2
ω̄t

abvb,

∇mva = ∂mva + *
,

sin
√

4v2

√4v2 − 1+
-

PTab(v)∂mvb +
sin
√

4v2
√

4v2
ω̄s

abvb

−1
2

m2φ
sinh


m2φ2

m2φ2


cos
√

4v2PTab(v) + PLab(v)


ēmb. (2.24)

Finally the spin connections are obtained from ωM and ωB

ωMab = dtωt
ab + dxmω

m
ab

= ω̄ab + m2φ
sinh


m2φ2

m2φ2

sin
√

4v2
√

4v2

+
(
1 − cos

√
4v2

) 
PLac(v)ω̄bc − PLbc(v)ω̄ac −

(
dvavb − dvbva

v2

)
,

ωBa = dtωt
a + dxmω

m
a

= ω̄Ba + *
,

1 − cos
√

4v2

v2
+
-
[dwva − wdva − ω̄abwvb − ω̄Bbvbva]

+2m2φ
sinh


m2φ2

m2φ2

sin
√

4v2
√

4v2

�
w ēmadxm − vaē0

0dt − vadxmēm0
�
. (2.25)
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The AdS − CD invariant action is constructed in terms of the vielbein E

ΓAdS−CD
=


dtdpxLAdS−CD

(x, t) =


dtdpx det E. (2.26)

The AdS − CD transformations are non-linearly realized according to the group multipli-
cation properties involving the coset Ω as detailed in Appendix A. The invariance of the ac-
tion follows from the transformation properties of the vielbein E. The Maurer-Cartan one-forms
transform according to which representation of the local ISO(p) tangent space transformations
that the associated operator belongs given by the unbroken subgroup element h(x, t) obtained in
Appendix A. Using the coset transformation law gΩ(x, t) = Ω′(x ′, t ′)h(x, t), the one-forms trans-
form as ω′(x ′, t ′) = h(x, t)ω(x, t)h−1(x, t) − ih(x, t)dh−1(x, t), yielding

ω′ = ω′HH + ω′PaPa + ω′ZZ + ω′LL + ω′KaKa +
1
2
ω′MabMab + ω′BaBa

= hωh−1 − ihdh−1

= ωHhHh−1 + ωPahPah−1 + ωZhZh−1 + ωLhLh−1 + ωKahKah−1

+
1
2
ωMabhMabh−1 + ωBahBah−1 − 1

2
dθabMab − dθaBa. (2.27)

Hence the one-forms’ variations are obtained

ω′H = ωH − ωPaθa,

ω′Pa = ωPb(δba − θba) ≡ ωPbR−1
ba,

ω′Z = ωZ,

ω′L = ωL − ωKaθa,

ω′Ka = ωKbR−1
ba,

ω′Mcd = ωMabR−1
acR−1

db − dθcd,

ω′Ba = ωBbR−1
ba − dθa +

1
2
ωMcd(θcδda − θdδca). (2.28)

The covariant coordinate differentials and vielbeine transform as

ω̃′A = (ω′H ω′Pa) = (ωH ωPb) *
,

1 0
−θb R−1

ba

+
-

= dX ′ME ′MA = (dt ′ dx ′m) *
,

e′00 e′0a
e′m0 e′ma

+
-

= (dt dxr) *
,

e0
0 e0

b

er0 erb
+
-
*
,

1 0
−θb R−1

ba

+
-
= dXRER

BΛ
B
A, (2.29)

with letters from the beginning of the alphabet denoting the tangent space transformation prop-
erties. From Appendix A the coordinate differentials transform according to the general coordinate
transformation

dX ′M = (dt ′ dx ′m) = (dt dxn) *
,

G0
0 G0

m

Gn
0 Gn

m

+
-
= dXNGN

M, (2.30)

where the complicated general coordinate transformation matrix is denoted by GN
M, with letters

in the middle of the alphabet indicating world volume coordinate transformations. The spacetime
differentials have the Jacobian dt ′dpx ′ = dtdpx det G. Thus the vielbein EM

A transforms as

E ′MA = G−1M
NEN

BΛ
B
A, (2.31)

where the tangent space transformations have been denoted by
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Λ
B
A =

*
,

1 0
−θb R−1

ba

+
-
. (2.32)

Noting that detΛ = 1 so that det E ′ = det G−1 det E, the action is invariant

Γ
′
AdS−CD

=


dt ′dpx ′det E ′ =


dtdpx det G det G−1 det E

=


dtdpx det E = ΓAdS−CD

. (2.33)

With the vielbeine in Equation (2.18) the AdS − CD invariant action is found

ΓAdS−CD
=


dtdpx det E =


dtdpx det(ema)

�
e0

0 − e0
ae−1a

nen0
�
, (2.34)

with (noting that ē−1a
mēm0 = δamēm0 = ēa0)

det E = det Ēcoshp


m2φ2 cos
√

4v2



cosh


m2φ2 +Daφ2va
tan
√

4v2
√

4v2

+2ē0 −1
0 φ̇(w − vaēa0)

tan
√

4v2
√

4v2



. (2.35)

The background AdS − Cd spacetime measure is given by det Ē = ē0
0 det ēma and the partially covar-

iant spatial derivative Daφ = ē−1a
m

∂
∂xm

φ. Note that the covariant derivatives of φ, Equation (2.22),
are given by

∇tφ = φ̇ cos
√

4v2,

∇mφ = ēma cosh


m2φ2 cos
√

4v2 *
,

Daφ

cosh


m2φ2
− 2δabvb *

,

tan
√

4v2
√

4v2
+
-
+
-
, (2.36)

and can be used to covariantly constrain (as ω′Z = ωZ is invariant, Equation (2.28)) the field va
equivalent to the constraint obtained from the va field equation as well as constrain φ to be static as
obtained from the w field equation.

Indeed the field equations are obtained directly from the AdS − CD invariant action. The
w-equation of motion is obtained as

0 =
δ

δw(x, t)ΓAdS−CD

= (det ēma)coshp


m2φ2 cos
√

4v2

2
(
∂

∂t
φ

)
*
,

tan
√

4v2
√

4v2
+
-


. (2.37)

The va-field equation yields

0 =
δ

δva(x, t)ΓAdS−CD

= 2 det Ēcoshp+1


m2φ2 cos
√

4v2 *
,

Dbφ

cosh


m2φ2
− 2δbdvd *

,

tan
√

4v2
√

4v2
+
-
+
-
×

×

−2vb *

,

tan
√

4v2
√

4v2
+
-

Daφ

cosh


m2φ2

+ *
,

Dcφ

cosh


m2φ2
2vc *

,

tan
√

4v2
√

4v2
+
-
− tan2

√
4v2 +

tan
√

4v2
√

4v2
+
-

PTba(v)

+ *
,

Dcφ

cosh


m2φ2
2vc *

,

tan
√

4v2
√

4v2
+
-
+ 1+

-
PLba(v)


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+2
(
∂

∂t
φ

)
(det ēnb)coshp


m2φ2 cos

√
4v2


−ēa0 *

,

tan
√

4v2
√

4v2
+
-

+(w − v f ē f
0)
va

v2
*
,
1 − tan

√
4v2

√
4v2

+
-


. (2.38)

Finally the φ-equation of motion is obtained

0 =
δ

δφ(x, t)ΓAdS−CD

= det Ēcoshp+1


m2φ2 cos
√

4v2(1 + p)m2φ *
,

tanh


m2φ2
m2φ2

+
-

− det Ēcoshp


m2φ2 cos
√

4v2
�
2ē−1a

m∂
mvb

� 
*
,

tan
√

4v2
√

4v2
+
-

PTba(v) + PLba(v)


−
�
∂m

�
det Ēē−1a

m

��
coshp


m2φ2 cos

√
4v2


2va *

,

tan
√

4v2
√

4v2
+
-



−(det ēmc)coshp


m2φ2 cos
√

4v22
�
ẇ − va ˙̄ea0

� *
,

tan
√

4v2
√

4v2
+
-

+(det ēmc)coshp


m2φ2 cos
√

4v2
�
2v̇aēa0

� *
,

tan
√

4v2
√

4v2
+
-

−(det ēmc)coshp


m2φ2 cos
√

4v2
(
vav̇a

v2

)
2
�
w − vbēb0

� 
1 − *

,

tan
√

4v2
√

4v2
+
-


. (2.39)

Introducing the momentum density Π(x, t) as

Π(x, t) ≡ ∂ det E
∂φ̇

= det Ēē0−1
0 coshp


m2φ2 cos

√
4v22

tan
√

4v2
√

4v2
(w − vaēa0), (2.40)

and likewise defining the derivative of the Lagrangian with respect to the spatial derivatives of φ as
Πm(x, t)

Πm(x, t) ≡ ∂ det E
∂∂mφ

= det Ēcoshp


m2φ2 cos
√

4v2 tan
√

4v2
√

4v2
2vaē−1a

m, (2.41)

the φ-field equation is expressed as

0 =
δΓAdS−CD

δφ(x, t)
= −Π̇ − ∂m

Πm + det Ēcoshp


m2φ2 cos
√

4v2


sinh


m2φ2
m2φ2

m2φ


×

×



p + 1 + p


Daφ

cosh


m2φ2
2va

tan
√

4v2
√

4v2
+

ē0−1
0 φ̇

cosh


m2φ2
2(w − vaēa0)

tan
√

4v2
√

4v2





.

(2.42)

Applying the w-field equation implies that φ̇ = 0. As expected there is no causal connection so
the field has a static spatial distribution. Applying this to the vm-field equation yields the “inverse
Higgs mechanism”13 for the (spatial) components of the SO(p) vector field va

Daφ

cosh


m2φ2
= 2δabvb *

,

tan
√

4v2
√

4v2
+
-
. (2.43)

Since the φ covariant derivatives have the same form, Equation (2.22), the static nature of the
spatial distribution of the φ field and the inverse Higgs constraint for the spatial vector field va
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could equivalently be covariantly imposed on the fields by ωZ = 0. Finally applying the first two
field equations to the φ-field equation the momentum density time dependence is
obtained

Π̇ + ∂m
Πm =

det Ēcosh(p+1)m2φ2
cosh2


m2φ2 +DaφDaφ


m2φ

sinh


m2φ2
m2φ2


×

×



p + 1 + p


DbφDbφ

cosh2


m2φ2





, (2.44)

with the spatial momentum Πm becoming

Πm =
det Ēcosh(p+1)m2φ2

cosh2


m2φ2 +DbφDbφ

ē−1a
mDaφ. (2.45)

The Noether current for the broken translation symmetry with parameter ζ is more complex in
the background AdS − Cd case and no longer simply produces the φ field equation as in the Carroll
space case but involves time variation of a related composite operator. Noether’s theorem has the
same form as Equation (1.29) (with LAdS−CD

replacing LC) with the broken space translation
variations given in Appendix A. In addition to these variations, the induced general coordinate
transformation matrix G = ∂(t ′, x ′)/∂(t, x) is obtained and hence the det G−1

det G−1 = 1 +
(
1 + p + t

∂

∂t
+ xm∂

m

) m2ζφ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2


. (2.46)

This yields the relation ∆LAdS−C + LAdS−C( ∂
∂t
δt + ∂mδxm) = 0 and Noether’s theorem is obtained

0 = Ḋ + ∂mDm, (2.47)

where

D = Πδφ + δtLAdS−CD

= Π cosh
√

m2x2 + m2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2


Πxm∂

mφ − tΠm∂
mφ

+t det Ēcosh(p+1)


m2φ2 cos
√

4v2


,

Dm = Πmδφ + δxmLAdS−CD

= Πm cosh
√

m2x2 + m2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2


tΠmφ̇ − xmΠφ̇

+(Πmxn − Πnxm)∂nφ − xm det Ēcosh(p+1)


m2φ2 cos
√

4v2


. (2.48)

Applying the stationary constraint, φ̇ = 0, the broken translation symmetry currents become

D = Π

cosh
√

m2x2 + m2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2
xm∂

mφ



+tm2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2
×

×
(
det Ēcosh(p+1)


m2φ2 cos

√
4v2 − Πm∂

mφ

)
,

Dm = Πm


cosh
√

m2x2 + m2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2
xn∂

nφ


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−xmm2φ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2
×

×
(
det Ēcosh(p+1)


m2φ2 cos

√
4v2 − Πn∂

nφ

)
. (2.49)

The non-linear broken translation symmetry of AdS − CD space no longer results in theφfield equation
directly but involves a composite operator current. In the Carroll spacetime limit m2 → 0, as applied to
the above currents, D → Π and Dm → Πm and the broken translation current conservation equation is
just theφfieldequationasthebrokentranslationtransformationisasimpleφfieldshiftsymmetry(1.19).

Similarly combining the L and Ka one-forms in matrix notation as was done for the H and Pa one-
forms, Equations (2.19) and (2.20), the covariant derivatives are given as∇MVA with VA = (w,va) and

ω̃K A =
(
ωL ωKa

)
= dXM∇MVA =

(
dt dxm

) *
,

∇tw ∇tva
∇mw ∇mva

+
-
. (2.50)

Noting that under the non-linear transformations (2.30) of the coordinates and the transformations
of the covariant derivative one-forms with Equation (2.32) so that

ω̃′K A =
(
ω′L ω′Ka

)
=

(
ωL ωKb

) *
,

1 0
−θb R−1

ba

+
-
= ω̃KBΛ

B
A (2.51)

implying that

(∇MVA)′ = G−1M
N (∇NVB)ΛB

A. (2.52)

Combining the vielbeine into the matrix vielbein E as in Equation (2.19), its variation involves G
and Λ as shown in Equation (2.31). Thus calculating the trace of ∇V using E−1

(E−1A
M∇MVB)′ = Λ−1A

D(E−1D
M∇MVC)ΛC

B, (2.53)

an invariant is obtained

(Tr[E−1∇V ])′ = Tr[E−1∇V ]. (2.54)

Applying the w and va field equation constraints, φ̇ = 0 = v̇a and implicitly the Equation (2.43),
the remaining φ field equation (2.39) can be shown to be given by the trace of the covariant deriva-
tive of w and va. The inverse vielbein with the φ̇ = 0 constraint explicit so that e0

a = 0 is found to be

E−1A
M =

*
,

e0−1
0 0

−e−1a
nen0e0−1

0 e−1a
m

+
-
, (2.55)

where e−10
0 = e0−1

0 with e0
0 = ē0

0 cosh


m2φ2 and the inverse submatrix e−1a
m is found to be

e−1a
m =

1

cosh


m2φ2


PTab(v) + cos

√
4v2PLab(v)


ē−1b

m, (2.56)

both with the field constraints having been used. Multiplying these matrices together yields the
vector field covariant derivative trace

Tr[E−1∇V ] = e0−1
0 ∇

tw + e−1a
m∇mva, (2.57)

where again the constraints have been used, particularly v̇a = 0. Applying the covariant derivatives
which are recalled in Equations (2.24) with again the constraints applied finally yields the trace

Tr[E−1∇V ] = −1
2

m2φ(1 + p) cos
√

4v2 tanh


m2φ2
m2φ2

+
1

cosh


m2φ2
*
,
ē0−1

0 (ẇ − pω̄ t
0ava)

sin
√

4v2
√

4v2

+ē−1b
n ∂

nva



sin
√

4v2
√

4v2
PTab(v) + cos

√
4v2PLab(v)


+
-
. (2.58)
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Using the background one-forms, Equation (2.12), and background spin connections, Equation (2.13),
it is found that

∂m
�
det ēē0

0ē−1a
m

�
= det ē

�
˙̄ea0 − pω̄ t

0bδ
ba
�
, (2.59)

with ēa0 = ē−1a
r ēr0 so that ˙̄ea0 = ē−1a

r
˙̄er0. Applying this and the field constraints to the φ field

Equation (2.39) and exploiting the background spin connections ω̄ n
ab

and ω̄ t
0a, it is found that (2.39)

(with φ̇ = 0 = v̇a) can be written as

0 =
δΓAdS−CD

δφ
= −2 det Ēcosh(1+p)


m2φ2 Tr[E−1∇V ]. (2.60)

III. THE NAMBU-GOTO CARROLLIAN VIELBEIN AND THE DUAL VECTOR ACTION

Returning to the unconstrained fields and combining the vielbeine in matrix form EM
A, it and

the Lagrangian, det E, can be factorized into a product of the background AdSd world volume
vielbein, ĒM

A, times the Nambu-Goto Carrollian vielbein, NB
A, as such

EM
A = ĒM

BNB
A, (3.1)

with Equation (2.20)

EM
A =

*
,

e0
0 e0

a

em0 ema
+
-

(3.2)

and background AdSd vielbein

ĒM
A =

*
,

ē0
0 ē0

a = 0
ēm0 ēma

+
-

(3.3)

and correspondingly the inverse background world volume vielbein

Ē−1A
M =

*
,

ē0−1
0 0

−ē−1a
r ēr0ē0−1

0 ē−1a
m

+
-
. (3.4)

This yields the Nambu-Goto Carrollian vielbein NB
A = Ē−1B

MEM
A

NB
A =

*
,

N0
0 N0

a

Nb
0 Nb

a

+
-

(3.5)

with

N0
0 = ē0−1

0 e0
0

= eA


1 + 2we−AD tφ

sin 2v
2v


,

Nb
0 = ē−1b

n

�
en0 − ēn0ē0−1

0 e0
0

�

= 2w
sin 2v

2v
�
Dbφ − ēb0D

tφ
�
+ eAwvb

(
cos 2v − 1

v2

)
,

N0
a = ē0−1

0 e0
a

= 2D tφva
sin 2v

2v
,

Nb
a = ē−1b

m

�
ema − ēm0 ē0−1

0 e0
a

�

= 2va
sin 2v

2v
�
Dbφ − ēb0D

tφ
�
+ eA [PTba(v) + cos 2vPLba(v)] , (3.6)

where the notation uses the simplifying expressions

eA = eln cosh
√

m2φ2
= cosh


m2φ2 = cosh mφ,
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D tφ = ē0−1
0

∂

∂t
φ = ē0−1

0 φ̇,

Daφ = ē−1a
m

∂

∂xm
φ = ē−1a

m∂
mφ,

x2 = xmδ
mnxn = xmxm,

v =
√
v2 =

√
vava, (3.7)

where recall the shorthand expressions such as va = δabvb and likewise xm = δmnxn are used and
recall the background component vielbeine

ē−1a
mēm0 =

xat
x2 (1 − ē0

0) = ēa0,

ē−1a
m = ē0−1

0 PTam(x) + PLam(x),

ē0
0 =

sinh
√

m2x2
√

m2x2
. (3.8)

Hence the AdS − CD action is given by

ΓAdS−CD
=


dtdpx det E =


dtdpx det Ē det N, (3.9)

where det Ē = ē0
0 det ēma and

det N =
�
det Nc

d

� �
N0

0 − N0
aN−1a

bNb
0

�
. (3.10)

Letting Na
b
= uavb + eA (PTab(v) + cos 2vPLab(v)) the inverse submatrix N−1a

b
is

N−1a
b = αuavb + e−A [PTab(v) + βPLab(v)] , (3.11)

where

α =
−e−A

[uava + eA cos 2v] ,

β =
(eA + ubvb)

[uava + eA cos 2v] . (3.12)

For the case at hand

ua = 2
�
Daφ − ēa0D

tφ
� sin 2v

2v
, (3.13)

and so uava = 2
�
Daφ − ēa0D

tφ
�
va

sin 2v
2v . The submatrix determinant, det Na

b
, is also determined to

be

det Na
b = epA cos 2v


1 + 2e−A

�
Daφ − ēa0D

tφ
�
va

tan 2v
2v


. (3.14)

Putting all these expressions together yields the Nambu-Goto Carrollian determinant

det N = coshpmφ


cosh mφ cos 2v + 2

(
Daφva

sin 2v
2v

)
+ 2

�
w − vaē−1a

mēm0
�
D tφ

sin 2v
2v


. (3.15)

Thus with det Ē = ē0
0 det ēma = (ē0

0)p, the det E = det Ē det N Lagrangian is in agreement with the
Lagrangian obtained in Equation (2.35). The invariant action is obtained

ΓAdS−CD
=


dtdpx det E =


dtdpx det Ē det N

=


dtdpxē0

0(det ē)epA


eA cos 2v + 2

(
Daφva

sin 2v
2v

)
+2

�
w − vaē−1a

mēm0
�
D tφ

sin 2v
2v


. (3.16)
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As in the AdS case6 a vector field dual formulation of the AdS − CD action can be obtained by
introducing a vector field FM, with M = 0,1,2, . . . ,p

FM ≡ 2 det Ē
sin 2v

2v
VAĒ−1A

M, (3.17)

with space-time component fields

VA = (w, va) (3.18)

and

FM = ( f , fm). (3.19)

It is useful to introduce the singular tangent space metric

hAB = *
,

0 0
0 δab

+
-

(3.20)

as well as the singular background AdS − Cd metric

ḠMN ≡ ĒM
AhABĒN

B

= *
,

0 0
0 Ēm

aδ
abĒn

b

+
-

≡ *
,

0 0
0 ḡmn

+
-
. (3.21)

Note that det Ḡ = 0 and hence has no inverse. Using the singular metric it is found that

FMḠMNFN = fmḡmn fn. (3.22)

In terms of component fields it is obtained that

FM = *
,

f
fm

+
-
= 2 det Ē

sin 2v
2v

*
,

(w − vaē−1a
r ēr0)ē0−1

0

vaē−1a
m

+
-
, (3.23)

Inverting Equation (3.17)

VA = *
,

1
2 det Ē sin 2v

2v

+
-

FM ĒM
A, (3.24)

so that the component fields are related by

VA = *
,

w

va
+
-
=

1
2 det Ē sin 2v

2v

*
,

f ē0
0 + fmēm0
fmēma

+
-
. (3.25)

Hence the useful expressions are found

v2 = vaδ
abvb = VAhABVB =

1
�
2 det Ē sin 2v

2v

�2 FMḠMNFN

=
1

�
2 det Ē sin 2v

2v

�2 fmḡmn fn, (3.26)

while

det Ē cos 2v =
�

det Ē
�2 − FMḠMNFN (3.27)

and

VAĒ−1A
M∂Mφ =

�
w − vaē−1a

mēm0
�
D tφ + vaDaφ

≡ VAD̂Aφ, (3.28)
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where D̂Aφ = Ē−1A
M∂Mφ with ∂M = (∂ t, ∂m) and the partial covariant derivatives D tφ = ē0−1

0 φ̇ and
Daφ = ē−1a

m∂
mφ.

The determinant of the Nambu-Goto Carrollian vielbein, Equation (3.15), can be written in
terms of φ and FM as

det Ē det N = epA

(
eA


(det Ē)2 − FMḠMNFN + FM∂Mφ

)
. (3.29)

Following Ref. 6, introduce the function h(φ) so that

∂MφepA(φ) ≡ ∂Mh(φ) = dh
dφ

∂Mφ (3.30)

and hence dh(φ)
dφ
= epA(φ), the AdS − CD action now has the form, after integration by parts,

ΓAdS−CD
=


dtdpx


e(p+1)A(φ)


(det Ē)2 − FMḠMNFN − h(φ)∂MFM


. (3.31)

The scalar field φ equation of motion follows (d = (1 + p))
δΓAdS−CD

δφ
= 0 =

dh
dφ


dm2φ

sinh mφ

mφ


(det Ē)2 − FMḠMNFN − ∂MFM


. (3.32)

The φ equation of motion can be enforced by introducing the Lagrange multiplier field L yielding
the action

ΓAdS−CD
=


dtdpx


(det Ē)2 − FMḠMNFN

(
T(φ) + Ldm2φ

sinh mφ

mφ

)
− L∂MFM


, (3.33)

with

T(φ) = e(1+p)A(φ) − h(φ)dm2φ
sinh mφ

mφ
. (3.34)

Thus we see that the previous φ equation of motion, now coming from the L field equation, results
in the L dependent terms cancelling and the φ field itself being expressed in terms of FM. Thus
using this equation of motion

sinh mφ =
∂MFM

dm

(det Ē)2 − FRḠRSFS

=
ḟ + ∂m fm

dm

(det Ē)2 − fr ḡr s f s

, (3.35)

the T(φ) can be written in terms of FM, so adopting the notation T(φ) = T(φ(FM)) → T(F), the dual
vector form of the action is

ΓAdS−CD
=


dtdpxT(F)


(det Ē)2 − FMḠMNFN

=


dtdpxT( f , fm)


(det Ē)2 − fmḡmn fn (3.36)

along with Equations (3.35) and (3.34) to determine φ = φ(F) and T(F).
The equivalence runs in reverse as well, introducing a Lagrange multiplier L to enforce

Equation (3.35) yields the action of Equation (3.33) where T(φ) is given in Equation (3.34). The
fields φ, FM, and L are independent. The φ equation of motion allows L to be eliminated as
δΓAdS−CD

/δφ = 0 implies

L = − 1
dm2 e−A

dT
dφ
= h(φ). (3.37)
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Upon substitution into ΓAdS−CD
, Equation (3.33), yields Equation (3.31). The definition of FM in

terms of VA, Equation (3.17), can be applied along with (recalling that V 2 = VAhABVB = v2)

cos 2V = cos 2v =
1

(det Ē)

(det Ē)2 − FMḠMNFN . (3.38)

Thus substituting this into Equation (3.31) and integrating by parts results in the Nambu-Goto-
Carrollian action, note Equation (B58),

ΓAdS−CD
=


dtdpx det ĒepA(φ)


eA(φ) cos 2V +

sin 2V
2V

2VAĒ−1A
M∂Mφ


. (3.39)

This can be expanded in terms of component fields w and va to obtain the Nambu-Goto Carrollian
action of Equation (3.16).

IV. CONCLUSION

A p-brane with codimension one was embedded in D = d + 1-dimensional AdS-Carroll space
by means of the coset method. The vanishing speed of light, c → 0, Wigner-Inönü contraction
of the AdS space SO(2,D − 1) symmetry algebra was obtained and the AdS − CD/ISO(p) coset
element, Equation (2.8), was formed along with the unbroken background AdS − Cd/ISO(p) coset
element Equation (2.9). The non-linearly realized spontaneously broken AdS − CD → AdS − Cd

symmetry transformations were obtained in Appendix A. The invariant brane action was found us-
ing the Maurer-Cartan one-forms. Expanding the one-forms in terms of coordinate differentials, the
vielbeine and background vielbeine were obtained. These component vielbeine were re-assembled
as a Carroll spacetime matrix vielbein, Equations (2.14) and (2.19). The AdS − CD SO(2,D − 1)
invariant action was shown to be given by the determinant of this matrix vielbein

ΓAdS−CD
=


dtdpx det E (4.1)

with det E expressed in terms of the component fields in Equation (2.35).
The w, va, and φ field equations followed directly from the action. The w and va equa-

tions of motion implied the inverse Higgs mechanism constraints yielding the static nature of
the spatial shape of the φ field, φ̇ = 0, as expected from the contraction of the light cone to the
time axis as c → 0, and the auxiliary vector field va and the spatial derivatives of φ were related,
Equation (2.43). Both of these constraints can alternatively be imposed by the invariant φ-covariant
derivative constraint ωZ = 0. The canonical momentum density defined in Equation (2.40) on the
other hand exhibits time variation related to the shape of the brane, φ(xm), as well as the AdS − C
geometry. Finally the φ-field equation can be written in terms of the covariant derivatives of the
auxiliary fields w and va as Equation (2.60).

In the flat Minkowski space limit, m2 → 0, the AdS − CD results describe the p-brane embedded
in a Carroll spacetime, AdS − CD → CD. These results agree with those of the more informally derived
results discussed in the Introduction. In addition the broken translation symmetry Noether current in
the AdS − C case, Equation (2.47), with currents Equation (2.49), goes over to the Carroll space cur-
rents z = Π, zm = Πm, found in Table I, and the Carrollian component vielbeine can be obtained as
the m2 → 0 limit of Equation (2.18) and correspondingly the m2 → 0 action ΓC =


dtdpxLC with

det E
c→0−−−→ LC and action ΓC of Equation (1.9).

The AdS − CD vielbein E has the product form of the AdS − Cd background vielbein Ē times
the Nambu-Goto-Carroll vielbein N , E = ĒN , as expressed in Equations (3.1)-(3.7). The p-brane
action can be re-formulated in terms of its dual vector field FM action, Equation (3.36), with
functions φ = φ(F), Equation (3.35), and T(F), Equation (3.34). Likewise the dual action can be
reformulated to yield the brane Nambu-Goto-Carrollian action Equation (3.39) with component
form Equation (3.16).

An equivalent approach to obtain the p-brane action is to expose the speed of light in the
already known AdS(d+1) → AdSd brane action results and take the c → 0 Carrollian limit thereof.
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This method was presented in Appendix B where the Maurer-Cartan one-forms and Nambu-
Goto vielbein of Ref. 6 were used to obtain the AdS action with the speed of light parameter,
Equation (B58). The Carrollian limit was then taken to obtain the coset method component action
(3.16) results.
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APPENDIX A: AdS − C TRANSFORMATIONS

Using the group multiplication laws as applied to the coset Ω, the non-linearly realized AdS −
CD transformations are determined from

gΩ(x, t) = Ω′(x ′, t ′)h(x, t), (A1)

where the infinitesimal AdS − CD transformations form the group elements

g = eiϵHeiamPm
eiζZeiλLeiκmKm

e
i
2αmnM

mn
eiβmBm

, (A2)

while the transformed coset element is given by

Ω
′(x ′, t ′) = eit

′H+i x′mPm
eiφ

′(x′, t′)Zeiw
′(x′, t′)L+v′m(x′, t′)Km

. (A3)

The h(x, t) is an element of the invariant ISO(p) subgroup

h(x, t) = e
i
2 θmn(x, t)Mmn

eiθm(x, t)Bm
(A4)

with parameters θmn and θm that also depend on g. The transformations of the spacetime coordi-
nates and fields are found to be non-linearly realized

t ′ = t

1 +

amxm

x2

(
1 −
√

m2x2 coth
√

m2x2
)

−m2ζφ
tanh


m2φ2

m2φ2

sinh
√

m2x2
√

m2x2

− κmxm

x2 2φ
tanh


m2φ2

m2φ2
*
,
cosh
√

m2x2 −
√

m2x2

sinh
√

m2x2
+
-



+ϵ
√

m2x2 coth
√

m2x2 − λ2φ
tanh


m2φ2

m2φ2

√
m2x2

sinh
√

m2x2
− βmxm,

x ′m = xm


1 − m2ζφ

tanh


m2φ2
m2φ2

sinh
√

m2x2
√

m2x2


+ αmnxn

+
(√

m2x2 coth
√

m2x2PTmn(x) + PLmn(x)
)

an

−2φ
tanh


m2φ2

m2φ2



√
m2x2

sinh
√

m2x2
PTmn(x) + cosh

√
m2x2PLmn(x)


κn,

φ′(x ′, t ′) = φ(x, t) + ζ cosh
√

m2x2 + 2κmxm
sinh
√

m2x2
√

m2x2
,

w ′(x ′, t ′) = w(x, t) + ϵm2xmvm
tanh
√

m2x2/2
√

m2x2
− βmvm
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−m2t
tanh
√

m2x2/2
√

m2x2
amvm + λ

√
4v2 cot

√
4v2

cosh


m2φ2

+λ2φ
vmxm

x2

(√
m2x2 tanh

√
m2x2/2

) *
,

tanh


m2φ2
m2φ2

+
-

+
1
2

m2ζ
1

cosh


m2φ2

sinh
√

m2x2
√

m2x2


w

xmvm

v2 +
√

4v2 cot
√

4v2(t − w
xmvm

v2 )


+w
1

cosh


m2φ2

[1 − √4v2 cot
√

4v2]
v2 vm[PTmn(x) + cosh

√
m2x2PLmn(x)]κn

−m2tκmvmφ *
,

tanh


m2φ2
m2φ2

+
-
*
,

tanh
√

m2x2/2
√

m2x2/2
+
-

+tκmxm
*
,

√
4v2 cot

√
4v2

cosh


m2φ2
+
-
*
,

cosh
√

m2x2 − 1
x2

+
-
,

v ′m(x ′, t ′) = vm(x, t) + αmnvn +
m2

2
(amxn − anxm) 2

√
m2x2

tanh
√

m2x2/2vn

+
m2

2
ζ

1

cosh


m2φ2

sinh
√

m2x2
√

m2x2

√
4v2 cot

√
4v2PTmn(v) + PLmn(v)


xn

−m2φ
tanh


m2φ2

m2φ2

2
√

m2x2
tanh
√

m2x2/2(xm(κnvn) − κm(xnvn))

+
(√

4v2 cot
√

4v2PTmn(v) + PLmn(v)
) 1

cosh


m2φ2(
PTnr(x) + cosh

√
m2x2PLnr(x)

)
κr . (A5)

The invariant ISO(p) subgroup parameters θmn and θm are also obtained

θmn = αmn +
m2

2
(amxn − anxm) 2

√
m2x2

tanh
√

m2x2/2

−m2ζ
1

cosh


m2φ2

sinh
√

m2x2
√

m2x2
(xmvn − xnvm) tan

√
v2

√
v2

−m2φ
tanh


m2φ2

m2φ2

2
√

m2x2
tanh
√

m2x2/2(xmκn − xnκm)

−2
tan
√
v2

√
v2

1

cosh


m2φ2

(
PTmr(x) + cosh

√
m2x2PLmr(x)

)
κrvn

−
(
PTnr(x) + cosh

√
m2x2PLnr(x)

)
κrvm


,

θm = βm − ϵm2xm
tanh
√

m2x2/2
√

m2x2
+ m2tam

tanh
√

m2x2/2
√

m2x2

+m2ζ
tan
√
v2

√
v2

1

cosh


m2φ2

sinh
√

m2x2
√

m2x2
(tvm − xmw)

−λm2xmφ
tanh


m2φ2

m2φ2

2
√

m2x2
tanh
√

m2x2/2 + 2λvm
tan
√
v2

√
v2

1

cosh


m2φ2

+m2tφ
tanh


m2φ2

m2φ2

2
√

m2x2
tanh
√

m2x2/2κm
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+2tvm(κnxn) tan
√
v2

√
v2

1

cosh


m2φ2

cosh
√

m2x2 − 1
x2

−2w
tan
√
v2

√
v2

1

cosh


m2φ2

(
PTmn(x) + cosh

√
m2x2PLmn(x)

)
κn. (A6)

The symmetry transformations for D = d + 1 Carrollian spacetime as given in Equations (1.19)
and (1.21) and as well as the induced local rotations and boosts

Λ = *
,

1 0
−θn R−1

nm,
+
-

(A7)

with R−1
nm = δnm − θnm, where the induced infinitesimal rotation has parameter θmn,

θnm = αnm − 2
tan
√
v2

√
v2

(κnvm − κmvn) , (A8)

while the unbroken induced boosts have parameter θn,

θn = βn + 2 (λvn − wκn) tan
√
v2

√
v2

(A9)

are obtained as the m2 → 0 limit of these AdS − CD → AdS − Cd transformations.

APPENDIX B: AdS c→0
−−−−→ AdS − C

The purpose of this appendix is to make the speed of light c explicit in the AdSd+1 → AdSd
isometry algebra and associated coset elements in order to implement the c → 0 limit directly, re-
producing the action of Sections II and III. Returning to the SO(2,d) symmetry algebra for AdSd+1,
Equation (2.1), where now the SO(2,d) → SO(2,d − 1) isometry algebra for AdSd+1 → AdSd is
denoted with hatted operators so that

PM = P̂M for M = 0,1,2, . . . ,p,

Pp+1 = −Ẑ (B1)

and

MMN = M̂MN for M,N = 0,1,2, . . . ,p,

M p+1M = K̂M for M = 0,1,2, . . . ,p, (B2)

where now M,N = 0,1,2, . . . ,p labelling only the AdSd components while the (p + 1)th compo-
nents are separated into Ẑ and K̂M. The SO(2,d) algebra becomes that used in Equation (B.5) of
Ref. 6

[M̂MN , M̂RS] = −i
�
ηMRM̂NS − ηMSM̂NR + ηNSM̂MR − ηNRM̂MS

�
,

[M̂MN , P̂L] = i
�
P̂MηNL − P̂NηML

�
,

[M̂MN , K̂L] = i
�
K̂MηNL − K̂NηML

�
,

[M̂MN , Ẑ] = 0 , [P̂M, K̂N] = iηMN Ẑ ,

[P̂M, P̂N] = −im2M̂MN , [P̂M, Ẑ] = −im2K̂M,

[K̂M, K̂N] = iM̂MN , [Ẑ , K̂M] = iP̂M . (B3)

To make the speed of light explicit introduce the generators

P̂0 =
1
c

H,

P̂m = Pm,

K̂0 =
1
2c

L,
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K̂m =
1
2

Km,

Ẑ = −Z,

M̂m0 =
1
c

Bm,

M̂mn = Mmn, (B4)

where the spatial indices are labelled by m,n = 1,2, . . . ,p = (d − 1). Hence the SO(2,d) algebra of
Equation (B3) is as given in Equations (2.5)-(2.7) except for the four commutators involving the
explicit factor of the speed of light, which are now

[Bm,Bn] = −ic2Mmn , [Bm,L] = ic2Km,

[Bm,H] = ic2Pm , [H,L] = −2ic2Z. (B5)

Define the operators PM,MMN , Z, and K M with the explicit speed of light factors removed
as

PM = *
,

H
Pm

+
-
,

K M = *
,

L
Km

+
-
,

Z = Z,

MMN = *
,

0 −Bn

Bm Mmn
+
-
. (B6)

The relation to the hatted operators is given succinctly by

PM = CM
N P̂M,

K M = 2CM
N K̂M,

Z = −Ẑ ,

MMN = CM
R M̂RSCN

S , (B7)

with

CM
N =

*
,

c 0
0 δmn

+
-
. (B8)

In terms of these operators, the SO(2,d) algebra of Equation (B3) becomes

[MMN ,MRS] = −i
�
nMRMNS − nMSMNR + nNSMMR − nNRMMS

�
,

[MMN ,PL] = i
�
PMnNL − PNnML

�
,

[MMN ,K L] = i
�
K MnNL − K NnML

�
,

[MMN ,Z] = 0 , [PM,K N] = −2inMNZ,

[PM,PN] = −im2MMN , [PM,Z] = + i
2

m2K M,

[K M,K N] = 4iMMN , [Z,K M] = −2iPM, (B9)

where the metric has the form of a (p + 1) × (p + 1) diagonal matrix denoted nMN

nMN ≡ CM
Rη

RSCN
S =

*
,

c2 0
0 −δmn

+
-
. (B10)

Rather than use the coset method directly with this form of the algebra, the Maurer-Cartan
one-forms found using the hatted form of the algebra can be converted to one-forms with the
explicit powers of c exhibited and then the c → 0 limit performed. First the coset elements for the
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two sets of operators are identified. Consider the coordinates

x̂M ≡ (x0 , xm) = (ct , xm) (B11)

and

XM ≡ (t , xm) (B12)

that is XM = x̂NC−1N
M . Hence the coset elements

ei x̂M P̂M
= eiXMPM

. (B13)

Likewise let φ̂(x̂)Ẑ = φ(X)Z so that

eiφ̂ Ẑ = eiφZ, (B14)

and φ = −φ̂. Also define the components of v̂M as

v̂M = (v̂0, v̂m) = (2cw,2vm) (B15)

and those of VM as

VM = (w,vm). (B16)

Thus VM =
1
2 v̂NC−1N

M so that

ei v̂M K̂M
= eiVMKM

. (B17)

Finally equating the unbroken subgroup operators θ̂MN M̂MN = ΘMNMMN with

ΘRS = C−1M
R θ̂MNC−1N

S (B18)

so that

ΘRS = *
,

0 −θs
θr θr s

+
-

(B19)

while

θ̂MN = *
,

0 −θ̂n
θ̂m θ̂mn

+
-
= *
,

0 −c θn

c θm θmn

+
-

(B20)

and the subgroup elements are equal

e
i
2 θ̂MN M̂MN

= e
i
2ΘMNMMN

. (B21)

These coset elements so identified,

Ω̂ = ei x̂M P̂M
eiφ̂ Ẑei v̂M K̂M

= Ω = eiXMPM
eiφZeiVMKM

, (B22)

allow their respective Maurer-Cartan one-forms to be related, recalling the one-forms ω = −iΩ−1dΩ
and ω̂ = −iΩ̂−1d̂Ω̂ with d̂ = dx̂M

∂
∂ x̂M

= dt ∂
∂t
+ dxm

∂
∂xm
= dXM

∂
∂XM

= d, the one-forms are equal
ω = ω̂. Expanding them in terms of the generators with tangent space indices A,B = 0,1, . . . ,p
(recall world indices M,N = 0,1, . . . ,p also)

ω = ωAPA + ωZZ + ωK AK A +
1
2
ωABMAB (B23)

and

ω̂ = ω̂AP̂A + ω̂Z Ẑ + ω̂K AK̂ A +
1
2
ω̂ABM̂ AB, (B24)

and utilizing Equation (B7) the Maurer-Cartan one-forms are related

ωA = ω̂BC−1B
A ,

ωZ = −ω̂Z,
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ωK A =
1
2
ω̂KBC−1B

A ,

ωAB = ω̂CDC−1C
A C−1D

B . (B25)

These yield the relations for the component one-forms and the eventual c → 0 relation to the
one-forms of Section II. The explicit factors of c relating the component one-forms are, with
a,b = 1,2, . . . ,p,

ω0 =
1
c
ω̂0,

ωa = ω̂a,

ωZ = −ω̂Z,

ωK0 =
1
2c

ω̂K0,

ωKa =
1
2
ω̂Ka,

ωa0 =
1
c
ω̂a0,

ωab = ω̂ab. (B26)

The relation to the AdS − C one-forms of Section II is found in the c → 0 limit of the above, for
example, ω0 =

1
c
ω̂0

c→0−−−→ ωH .

Similarly for the background one-forms for which ˆ̄Ω = ei x̂AP̂
A
= Ω̄ = eiXAPA

and so ω̄ = ˆ̄ω.
Expanding in terms of the generators

ω̄ = ω̄APA +
1
2
ω̄ABMAB (B27)

and

ˆ̄ω = ˆ̄ωAP̂A +
1
2

ˆ̄ωABM̂ AB, (B28)

and using the relations for the one-forms

ω̄A = ˆ̄ωBC−1B
A ,

ω̄AB = ˆ̄ωCDC−1C
A C−1D

B , (B29)

these yield the component background one-form equalities

ω̄0 =
1
c

ˆ̄ω0,

ω̄a = ˆ̄ωa,

ω̄a0 =
1
c

ˆ̄ωa0,

ω̄ab = ˆ̄ωab, (B30)

with the AdS − C background one-forms of Section II found in the c → 0 limit, for example

ω̄0 =
1
c

ˆ̄ω0
c→0−−−→ ω̄H .

Applying these c-factor conversions to the Maurer-Cartan one-form ω̂A found in Equation
(2.10) of Ref. 6 for charges defined with upper indices, as is the convention here,

ω̂A = −
sinh
√
v̂2

√
v̂2

v̂Ad̂φ̂ + cosh


m2φ̂2

PT AB(v̂) + cosh

√
v̂2PLAB(v̂)


ηBC ˆ̄ωC, (B31)

with the corresponding background one-form ˆ̄ωA of Ref. 6

ˆ̄ωC =



sin
√

m2x̂2
√

m2x̂2
PTCD(x̂) + PLCD(x̂)


ηDEdx̂E, (B32)
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yields the resulting ωA one-form ωA = ω̂BC−1B
A

ωA =
sinh
√

4V 2
√

4V 2
2VAdφ + cosh


m2φ2


P B
T A(V ) + cosh

√
4V 2P B

LA(V ) ω̄B, (B33)

with the projection operators

P B
LA(V ) = PLAC(V )nCB =

VAVCnCB

VDnDEVE
,

P B
T A(V ) = δ B

A − P
B

LA(V ), (B34)

and where v̂2 = v̂Aη
ABv̂B = 4VDnDEVE ≡ 4V 2. In analogous fashion the background one-form is

derived ω̄A = ˆ̄ωBC−1B
A

ω̄A =



sin
√

m2X2
√

m2X2
P M
T A (X) + P M

LA (X)


dXM, (B35)

with x̂2 = x̂MηMN x̂N = XMnMNXN ≡ X2. Likewise from Equation (2.10) of Ref. 6

ω̂Z = cosh
√
v̂2


d̂φ̂ − cosh


m2φ̂2 ˆ̄ωAη

ABv̂B
tanh
√
v̂2

√
v̂2


, (B36)

from which it is found that

ωZ = −ω̂Z = cosh
√

4V 2

dφ + cosh


m2φ2 ω̄AnAB2VB

tanh
√

4V 2
√

4V 2


. (B37)

The vielbein EM
A is defined by relating the covariant differentials ωA to the coordinate differen-

tials dXM

ωA ≡ dXMEM
A. (B38)

Likewise

ω̂B ≡ dx̂M ÊM
A (B39)

and so the vielbeine are related through the one-forms ωA = ω̂BC−1B
A as

EM
A = CM

N ÊN
BC−1B

A . (B40)

Similarly for the background one-forms

ω̄A = dXMĒM
A,

ˆ̄ωA = dx̂M
ˆ̄EM
A, (B41)

and hence the related vielbeine

ĒM
A = CM

N
ˆ̄EN
BC−1B

A . (B42)

Since the one-forms ωA and ω̄A are already obtained, the vielbeine can be read off from their
forms. From Equation (B35) the background vielbein ĒM

A is seen to be equal to

ĒM
A =

sin
√

m2X2
√

m2X2
P M
T A (X) + P M

LA (X). (B43)

Equation (B33) with dφ = dXM
∂

∂XM
φ = dXM∂Mφ and ω̄B = dXMĒM

B provides the vielbein EM
A

EM
A =

sinh
√

4V 2
√

4V 2
2VA

∂

∂XM
φ + cosh


m2φ2


P B
T A(V ) + cosh

√
4V 2P B

LA(V ) Ē M
B . (B44)

The speed of light can be taken to zero to obtain the results of Sections II and III. Displaying
the component one-forms and vielbeine, it is found for the background one-forms and vielbeine
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that

ω̄0 = dtĒ0
0 + dxmĒm

0

c→0−→ dt *
,

sinh
√

m2x2
√

m2x2
+
-
+ dxm

*
,

t xm

x2
*
,
1 − sinh

√
m2x2

√
m2x2

+
-
+
-

= ω̄H = dtē0
0 + dxmēm0 ,

ω̄a = dtĒ0
a + dxmĒm

a

c→0−→ dxm
*
,

sinh
√

m2x2
√

m2x2
PTam(x) + PLam(x)+

-
= ω̄Pa = dtē0

a + dxmēma. (B45)

Thus the vielbeine components of Section II, Equations (2.12) and (2.14), have been obtained. In
short this c → 0 limit is

ĒM
A

c→0−−−→ ĒM
A . (B46)

Proceeding in a similar manner for the one-forms and vielbeine their c → 0 limits are obtained
as those of Section II

ω0 = dtE0
0 + dxmEm

0

c→0−→ dt


sin
√

4v2
√

4v2
2w∂ tφ + cosh


m2φ2Ē0

0



+dxm



sin
√

4v2
√

4v2
2w∂mφ + cosh


m2φ2Ēm

0

+ cosh


m2φ2
(
cos
√

4v2 − 1
) wvb

v2 Ē
m
b


= ωH = dtE0

0 + dxmEm
0 ,

ωa = dtE0
a + dxmEm

a

c→0−→ dt


sin
√

4v2
√

4v2
2va∂ tφ


+ dxm

*
,

sin
√

4v2
√

4v2
2va∂mφ

+ cosh


m2φ2

PTab(v) + cos

√
4v2PLab(v)


Ēm

b
+
-

= ωPa = dtE0
a + dxmEm

a. (B47)

Thus the vielbeine components of Section II, Equations (2.18)-(2.20), have been obtained. In short
this c → 0 limit is

EM
A

c→0−−−→ EM
A . (B48)

The c → 0 limit of the φ covariant derivatives is found from the ωZ one-form Equation (B37)

ωZ ≡ dt∇̃tφ + dxm∇̃mφ
c→0−→ dt

(
φ̇ cos

√
4v2

)
+dxm cos

√
4v2


∂mφ − cosh


m2φ22vaēma

tan
√

4v2
√

4v2


= ωZ = dt∇tφ + dxm∇mφ, (B49)

which agree with the φ covariant derivatives in Section II Equation (2.22). Thus the same AdS − C
results are obtained as in the use of the coset method.
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The Nambu-Goto vielbein, N̂B
A, is defined by factoring the background vielbein from ÊM

A so
that

ÊM
A =

ˆ̄EM
B N̂B

A (B50)

and so

N̂B
A =

ˆ̄E−1B
M ÊM

A . (B51)

Correspondingly EM
A = Ē

M
BN B

A and N B
A = Ē

−1B
MEM

A. Exploiting the relations between Ê, ˆ̄E and E,
Ē, it is obtained that

N B
A = CB

DN̂D
CC−1C

A . (B52)

Thus detN = det N̂ and from Equations (B40) and (B42) det E = det Ê as well as det Ē = det ˆ̄E.
Consequently the AdS invariant action, Equation (3.18) of Ref. 6 rescaled by −σ/c, ΓAdS ≡

dtdpx det Ê, is written in terms of det E as

det Ê = det ˆ̄E det N̂ = det Ē detN = det E . (B53)

Utilizing Equation (3.19) or (3.20) of Ref. 6 for the det N̂

det N̂ = coshd


m2φ̂2 cosh

√
v̂2


1 − *

,
v̂A

tanh
√
v̂2

√
v̂2

+
-

*..
,

ˆ̄E−1A
M ∂̂M φ̂

cosh


m2φ̂2

+//
-


, (B54)

and converting φ̂, v̂A and x̂M to φ, VA and XM as well as using the relation

Ē−1A
M = CA

B
ˆ̄E−1B

NC−1N
M (B55)

in order to find that

CB
A

ˆ̄E−1A
M

∂

∂ x̂M
φ̂ = −Ē−1B

M

∂

∂XM
φ, (B56)

the detN is found

detN = coshd


m2φ2 cosh
√

4V 2

1 + *

,
2VA

tanh
√

4V 2
√

4V 2
+
-
*
,

Ē−1A
M∂Mφ

cosh


m2φ2
+
-


. (B57)

Thus the AdSd+1 → AdSd brane embedded action ΓAdS is obtained (note Equation (3.20) of
Ref. 6)

ΓAdS =


ddX det Ē detN

=


ddX det Ēcoshd


m2φ2 cosh

√
4V 2


1 + *

,
2VA

tanh
√

4V 2
√

4V 2
+
-

*
,

1

cosh


m2φ2
Ē−1A

M

∂

∂XM
φ+
-


, (B58)

in which the explicit factors of c are in the background vielbein ĒM
A and its inverse Ē−1A

M (note
the form of Equation (3.39) in which the c → 0 limit is already taken). Further, taking the c → 0
limit, the explicit component fields can be exhibited from Equations (B12) and (B16) to obtain

Equation (3.15) of Section III for detN c→0−−−→ det N and likewise det Ē c→0−−−→ det Ē = ē0
0 det ēma.

Thus ΓAdS
c→0−−−→ ΓAdS−CD

and Equation (3.16) is obtained.
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