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The motion of neutral particles with magnetic moments in an inhomogeneous magnetic field is described in
a quantum mechanical framework. The validity of the semiclassical approximations which are generally used
to describe these phenomena is discussed. Approximate expressions for the evolution operator are derived and
compared to the exact calculations. Focusing and spin-flip phenomena are predicted. The reliability of Stern-
Gerlach experiments to measure spin projections is assessed in this framework.
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I. INTRODUCTION herent internal states. These internal states evolve in time

The Stern-Gerlach experiment consists in taking a bearffcc0rding to an evolution operator which is determined by
of particles that have a neutral electric charge, but a finitd'€ interaction evaluated along the trajectory. The coherent
magnetic moment, and passing them through an inhomogémemal states, in the case of the Stern-Gerlach experiments,
neous magnetic field. The observed result is that the particled € States .W'Ifjh d?]ﬁmtde_ projection along tge dlrzc_tlon of tpe
deflect differently depending on the spin projection along thd"agnetic field. This direction may vary depending on the

magnetic field. So, by measuring the deflection, one can infef0Sition of the particle, because the magnetic field is not

; g ; homogeneous.
the value of the spin projection of the particles along the The main result of7] is that, indeed, when a beam of

direction of the magnetic field. The description of this phe- _ . ;
nomenon is done with the following assumptions. pa_rtlcles.gotgs thrgughta itern—(jgrlach rphagnet_, the ‘.j'ﬁf.rem
(i) The spin projection along the axis, taken along the Spin projections deviate cepending on the spin projection.
’ However, when the size of the beam is not very small com-

ma(qgeggriig:g at ﬂtf g%‘ggﬂ?f th_i beri-rgéti% ﬁonjgrnve?;ue pared to the range of inhomogeneity of the magnetic field,
. Icles with di Spin projections 9 aaddltlonal effects occur.

axis, as they go through the inhomogeneous magnetic field, () There is a focusing effect, so that the particles deviat-
suffer a force in the direction that is given by the product of jng in the direction in which the field decreases tend to focus,
the magnetic moment times the gradient of the field times theuhile those going in the direction of increasing field tend to
spin projection. defocus.

This is what we will call thetextbookdescription of the (i) There are some particles with a given spin projection
Stern-Gerlach experimefi—4]. Thus, considering the par- which deviate as those with a different spin projection. So
ticle position as a pointer and the spin projection as the quarthe Stern-Gerlach setup is not, even in theory, a “completely
tum property to be measured, the Stern-Gerlach setup is aseliable” measuring apparatus.
sociated with a measurement operator on the spin state which (iii) There are some particles, with a definite spin projec-
has as eigenvalues the spin projections alongzties. Un-  tion along the quantization axis, which change the spin pro-
der thetextbookdescription, the Stern-Gerlach experimentjection as they go through the magnet. So the Stern-Gerlach
corresponds to an “ideal” measurement, in the sense of vosetup is not an “ideal” measurement apparatus, as successive
Neumann5], because the quantum state is not modified bymeasurements will not give exactly the same results.
the measurement process when it is an eigenstate of the mea-This is what we will call thesemiclassicatlescription of
suring apparatus. Besides, it is “completely reliable,” in thethe Stern-Gerlach experiment. Note that if we associate the
sense discussed 6], because the position is completely particle position after the magnet as a “pointer,” which gives
correlated with the spin projection. the result of the measurement of the spin projection along the

However, when the experiment is investigated in morez axis, then we conclude that, in the semiclassical descrip-
detail, the situation becomes more complicated. As the magion, the Stern-Gerlach experiment is not an ideal measure-
netic field has zero divergence, then it is not possible to havenent, because it can alter the spin projection, or a completely
a gradient of the field only in one direction. This producesreliable one, because the position is not always correlated
terms in the Hamiltonian that can change the spin of thewith the spin projection.
incident particle. A detailed investigation of these effects was These conclusions were obtained in a semiclassical
made in a recent publicatidiT], making use of the concept framework, in which the motion of the particles was de-
of coherent internal stat¢8] in a semiclassical approach. In scribed by classical trajectories which depended in the spin
this approach, it is shown that the quantum mechanical wavprojection along the magnetic field that they encountered.
function which describes the motion of a system with inter-Our motivation here is to see whether the same conclusions
nal degrees of freedom can be approximated by a single trdrold when the full quantum mechanical problem is consid-
jectory only for certain internal states which are called co-ered. In Sec. Il we formulate the time-dependent quantum
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mechanical problem of a wave packet going through a SternY component will evolve freely inside the magnet, because
Gerlach magnet and discuss the validity of the textbook anthe Hamiltonian does not have any interaction term which
semiclassical approaches. In Sec. Ill we present the numeriélepends or, once that the border effec{sccurring atY

cal solution of the quantum mechanical problem. In Sec. IV=0 andY=L) are found to be negligible.

we investigate several analytic approximations to the prob- Note that the wave packet will stay within the magnetic
lem, considering the validity of the concept of coherent in-field during a timer=L/v,, wherev,=7k,/M. Assuming that
ternal states. In Sec. V we discuss the interpretation of Sterrthe size of the wave packet is very small compared tb
Gerlach experiments as measurements devices. Sec. Vlis fand taking into account that the transit timheis much

a summary and conclusions. smaller thanT, we can consider that the magnetic field starts
at T=0 and finishes af=r. So we focus on solving the
Il. QUANTUM MECHANICAL FORMULATION two-dimensional time-dependent problem, which corre-

magnetic field on the evolution of a quantum wave packet] =0 andT=in a Hamiltonian
The situation that we will consider is a magnetic field that P2 4 p2 R
has components in thé and Z directions, but not in thef =X __Z_

direction. This magnetic field has a lendth and it can be

written as considering that the initial wave function is

>

o B-I, (4)

24 72

B=(Bp+B;12)U,—B;Xl,, O0s<Y=<L. (1) (XZ: m|q)('|': 0);my =N ex%— XZO,ZZ )5(m, mp). (5)

We use the capital letteps,Y,Z,T to represent magnitudes

with dimensions. Lowercase,y,z,t correspond to dimen- |t is convenient to make use of dimensionless variables. So
sionless quantities. We neglect border effects arotm@ or o definex=X/o. z=Z/ o t=T/r andh=H7/%. Then. the
Y=L. Note that this field fulfillsVB=0 and alsdv XxB=0, as  equation of motion becomes
should be expected for a magnetic field in the region where q
there are no currents. These conditions were not fulfilled in hld M) me = i—|db(t): 6
the case discussed in textbooks suchilass]. |D(t); mp) dt| ©:mo). ©

The Hamiltonian which describes a nonrelativistic neutral
particle which enters in this field is given by

_ Pi+Pi+PZ - -

- BT, ) hozg(p§+p§, v=-Shz+tz) -1, ()

The dimensionless Hamiltonian can be writtenhashy+v,
with

where i is the magnetic moment ards the spin operator. wherep,=—-id/dx, p,=—id/dz and the dimensionless param-
We consider now a wave pack@t(T); mg) which enters etersA, S,z, are

into this field. Initially, the wave packet can be characterized

in coordinate space as a Gaussian which is moving inythe A= it S= uBy 7o _Bo ®)
direction, while the initial spin projection along tiZeaxis is "M T T oB;’
o The adiabaticity parametek is the ratio of the interaction
XY Zm¥(T = 0):my) = N exgl - XP+Y*+ 72 time 7 to the natural time of expansion of the Gaussian
=0 My =Nex 252 packet. The separation paramegis the ratio of the mo-

. mentum change induced by the magnetic field gradient di-
Xexp(ikyY) o(m,my). () vided by the momentum width of the Gaussian packet. The

Note that, neglecting the effects of the border, fheompo-  inhomogeneity parametay, determines the relative change
nent of the wave function is not affected by the interaction.Of the magnetic field in the range of the Gaussian. Note that
Border effects will be relevant when the transit time, whichin the position(x=0,z=-z), the magnetic field vanishes.
is the time that the particle takes to go from the situation inNote that the producAS=uB,7/Ma is independent of:.
which the field vanishe$B=0) to the situation where the This magnitude is related to the deviation of the beam in the
o . - N magnet. For a given trajectory, which is determined by a
field is stationary(B=BoU,), is short compared to the pre- fixeq value of the produchAS the classicallimit is reached
cession time of the spin in the magnetic field. An estimate ohs 5 % and A— 0. Note that this corresponds to making
the transit time ist;=Bo/(Byv). The precession time i, 7 .0 in Egs.(8).
=h/(Bow). It can be seen that, for realistic cases, the transit
time, although short compared to the time that the beam
spend within the magnet, is always larger than the precession
time. So the spins of the particles of the beam have the time We will now discuss the validity of the semiclassical and
to adapt to the magnetic field in which they enter. textbook descriptions of the Stern-Gerlach experiment. It
The wave function is given by a wave packet that can beshould be noticed that, in general, a beam of particles is not
factorized into & component and afX,Z) component. The given by a pure quantum mechanical state, but rather by a

Validity of the semiclassical descriptions
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mixture of small quantum wave packets. For definiteness, we T a)
consider that initially one has a distribution of particles de- - '
scribed as a Gaussian mixture, of rangg of small Gauss-

ian wave packets of range. The beam profile will then be
characterized by a Gaussian of range \ o2+ 2. The con-
ditions required, in order to justify the semiclassical descrip-
tion done in[7] are the following.

(8 The inhomogeneity of the magnetic field over the
quantum size of the wave packet should be sme; <B,,.

This implies thatzy> 1.

(b) The momentum change should be large compared to
the quantum spread of the beam momentwB;>%/o.
This implies thatS>1.

Note that these conditions are very well satisfied in real- e b)
istic situations for Stern-Gerlach experiments. However, the e o
validity of the textbook description requires also the far more 04"
stringent conditiono;B; <B,, which requires a very strong \
field B, or, alternatively, a very thin beam.

The purpose of this work is to investigate the full quan- o'zx Lo

tum solution of this problem for values of the parametgrs
andSwhich are not necessarily very large, so that the semi- 0.
classical and textbook descriptions become dubious. Never- 0
theless, in order to have a reference to compare the quantum 10
calculation, we recall the expected results in the textbook
description. The trajectory of the center of the wave packet
inside the magnet is given by the expression -10 -10 z

Zn(t) = 1/2(SA)m12, ©) FIG. 1. Probability distribution for an unpolarized wave packet
which depends on the spin projection Note that, after the after .going through an inhomogeneous magnetic field. Note the
interaction (t=1), the positions of the center of the wave focusing effect of the lower component, which corresponds pre-

: P : dominantly tom=-1/2. The upper figure corresponds A&0.5,
EaS(,:Al\(r?}SZ E]:z:i tte;:?rhveT(F))(I:?tiezrgjrzr:?f)n— SEX?WZQ I\Ilfe naft?rﬁ('il)e S=4. The lower figure is foA=0.1, S=20, which is closer to the
- - el o lassical limit.
interaction, the beam evolves freely during a titgethen the classical imi
positions of the center of the wave packets are expected to be

pry

10

given by é(Pi + p§) - §z §x
2. (ty) = (1/2 +t,) (SAm, (10) 2 . 2 N 2 . {Zgig]
As a typical value of the drift timey we will consider the EX E(pf pﬁ) + > o
time necessary to reach the positigh=-z,, for the spin
projectionm=-1/2, _ ig{a(X,Z,t)} (13)
ty= 22,/(SA - 1/2. (11) dtL g(x,zt) J'

Thus we would expect that, after a drift tintg particles
with spin projectionm=1/2 should appear arounz=z,, X

=0, and particles with spin projectiom=-1/2 should ap-
pear aroundz=-z,, x=0.

where a(x,z,t) and B(x,z,t) are the components of the
spinor in the basis of the eigenstateslof The numerical
solution of this equation has already been performed by Gar-
raway and StenholfB]. However, they considered the case
in which z, was large, so their numerical result corresponded
lil. NUMERICAL CALCULATIONS to the textbook interpretation. A similar problem has been

We consider the scattering of a spin-1/2 particle. We ex2ddressed by Francet al. [10], but they made use of the
pand the wave function into two components, which haveadiabatic approximation, neglecting the kinetic energy dur-

definite spin projections along theaxis, ing the interaction time. . .
. To follow our approach we must first write both compo-
(xz;m= 1/2D(t);mp) = a(x,2,1)"5??, nents of the spinor as linear combinations of harmonic oscil-

. lator functions, so that
(xz;m= - 1/2d(t);mp) = B(x,z,)e"SV2, (12

and the Schrédinger equation for thez) plane can be writ- a(x,2,t) = > apm(t) dn(X) din(2)
ten as nm
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1 . 1 i
a,=-=(z+ip,), a=-=(z-ip,. (15
V2 V2

BX,2,) = 2 bni(t) n(X) (D), (14)
nm
where ¢,(x) and ¢,,(z) are the harmonic oscillator eigen-
states of orden andm in thex andz directions, respectively.
To calculate the time-dependent coefficierdg,(t) and o ) _
b(t) of the expansion, it is natural to rewrite EQ.3) in Thus, substituting the operatai5) into Eq. (13), we obtain

terms of the well-known creation and destruction operatorst€ desired system of ordinary coupled differential equations
for the coefficients of the expansion ok(x,z,t) and

1 1 .
a,=—=(x+ipy), ar=-=(x-ip,), B(X,2,1):
V2 V2

. A N - I N
Anm= |Z[an+2,m\“"(n +1)(n+2)+ an—2,m\"n(ﬂ -+ an,m+2\“’(m+ H(m+2) + an,m—2\"m(m_ 1) - 2a,,(n+m+1)]

.S — — J— —
+ 'E[an,mﬂ\fm’f 1 +85m-2 VM= (Dpyg VN + 1 +by g Vn)e7S%'],
v

y A VN o~  __
Bam= Iz[bn+2,m\'(n +1)(n+2) +bypmyn(n=1) + by peoV(M+ DM+ 2) + by pym(m=1) = 2b,(n+m+ 1)]

. S ' — Iy —
" IE[_ bn_m+l\“’m +1- bn,m—l\““m_ (an+1,m\"n +1 +an—1,m\"n)elszot], (16)
\’

where the overdot stands for differentiation with respect toas A decreases an8 increases. So we have confirmed that
the dimensionless parameteiThis system is solved using a the focusing effect that was predicted in the semiclassical
fourth-order Runge-Kutta method. The number of harmoniccalculation in[8] is a genuine result that appears in the quan-
oscillator basis functions needed in the calculation was typitum mechanical calculation, although it is diffused if the
cally of the order of 40 in each coordinate. adiabaticity parameteA has a sizable value. It should be
We have performed calculations using typical values Ofno_ticed that this fo_cusing effect was also found in the calcu-
A=0.5,S=4, andz,=4. This corresponds to a case in which lations presented if@]. o , o
the magnetic field vanishes at a distance of Fhe time of In contrast to the textbook description, even if the initial
the interaction is such that the width of the beam wouldP&am has a definite spin projection along zrexis, after the

increase by a factor of1 +AZ. The magnetic field gradient is scattering process this spin projection can change. We have

such that each component of the magnetic field will acquireevaluated the probability that the particles change their spin

a momentum of /2, in opposite directions. As a compari- projecti_o_n along_ thez axis._ It should_be noti(_:ed that the
son, we have also considered calculations WAth0.1, S probability of going from spin up to spin down is not exactly

- - : ‘o the same as that of going from spin down to spin up. For the
=20, andz,=4, which produce the same deviation of the .
beam, butzoare closer topthe classical limit. reference caseA=0.5, S=4, zp=4), we obtain thap(1/2,

After the interaction, we consider a drift tinbg given by _1/2)=0'916§ andp(-1/2,1/2=0.0198. , i i
Eq. (11), during which the system evolves in the free Hamil- 1N SPin-flip phenomenon also appears in the semiclassi-
tonian, so that the center of the=1/2 wave packet would cal description, because not all the particles that compose the
reach the poinz= +z, according to the textbook description, 2€am see the magnetic field along thaxis. The semiclas-

In Fig. 1 we represent the probability distribution of a Sic@l spin-flip probability is p(1/2,-1/2=p(-1/2,1/2

wave packet, corresponding initially to an unpolarized beam=0-0156, which depends only on the valuezgf This is in
This is given by good qualitative agreement with the quantum calculations. In

Fig. 2 we represent the spatial distribution of the spin-flip
1 ) ) probability. Note that the spin-flip probability vanishes for
Po(x.2) = 52 [z m@(t);mo)*. (17) particles coming out along theaxis. The spatial distribution

m of the spin-flip probability is in qualitative agreement with

The focusing effect can be clearly seen by comparing theéhe semiclassical calculation, which becomes more accurate
shape of the distributions for the upper and lower compoas one makes the lim&— 0, S—, with AS constant.

nents, which correspond predominantly no=1/2 andm The results of our calculations can be summarized as fol-
=-1/2, respectively. The effect of the focusing is increasedows: When a beam of patrticles, described by a Gaussian
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tant role in the approximate solution of this problem. In this
section we derive several approximate expressions which
make use of expansions of the exact evolution operator in
terms ofv andhy and its commutators.

We can use the coordinates

p=\(z+20)2+x%, B= arctan——, (19
(z+2)

and refer the spin components to the direction of the mag-
netic field at each position:

, lg=1,c09pB) - I, sin(B), Ir=1,sin(B) +1,cogB).
8 (20)

In terms of these variables, the initial state can be expressed

FIG. 2. Contour plot of the probability distribution of the spin-

flip component(spin up to spin downof the wave function. The as
maximum is 3.3 1074, (pB;md(t=0);mp)
- —_— S p? = 2pz5cOSB+ 25
wave function and with a given spin projection along the =Nexp - 8(m,my)
axis, goes through an inhomogeneous magnetic field, most of 2
the particles scatter as expected in the textbook description. (21

However, a sizable fraction of them, which dependszgn )

(about 2% forzy=4), suffer a change of the spin projection @ndho andv take the expressions

(spin flip). From these particles that suffer spin flip, about A

half scatter in the same direction as the majority of the par- ho= E(p§+ p_2p/23), v=-5plg, (22
ticles and the other half scatter in the opposite direction. We

can conclude that the spin-flip effect described in the Semiwherepp and pj; are the momenta associated wijtfand g.
classical description, which was not present in the textbookhe relevant commutators are the following:
description of Stern-Gerlach experiments, is supported by

the full quantum mechanical calculations. Also, we confirm [ho,v] =i1AS(p,lg = {Pg:I7}/2p), (23
that the Stern-Gerlach experiment, when considered as a
measurement apparatus of the spin projection, is not an ideal [[ho,v],v]=-AS(I1Z + I%—{pﬁ,ly}IZ . (24

measurementbecause there is spin fli@nd it is not fully )
reliable (because there is not an exact correlation betweePOt€ tha_\t[[ho,v],ho]:zo aznd[[[ho,u],v],ho]:o. For spin-
the initial spin projection and the final position of the par- 1/2 particles|=1/2,1g=17=1/4.

ticle).

However, there are qualitative features of the full quan-
tum mechanical result, such as the difference between up-
down and down-up spin-flip probabilities, that are not The simplest approximation for the evolution operator
present in the semiclassical description and require furtheconsists in neglecting completely the effecthgf This leads
investigation. to the adiabatic approximationgiven by

U(t) = exp(- itv) = explitSplg). (25)

A. Adiabatic approximation

IV. APPROXIMATE TREATMENTS Note that this expression conserves the projection of the spin

Having solved numerically the problem, we will consider along the direction of the magnetic field. Thus, it is conve-
several approximate treatments to improve our understandiént to expand the initial spin state into stafes which
ing of the phenomena under consideration. The starting poirftllfill Igln)=n|n). This can be done considering the rotation

is the exact evolution operator and the free evolution operaof an angleg around they axis which takes the axisto the
tor direction of the magnetic field. Thus, the adiabatic expres-

) . sion for the wave function after the interaction becomes
U@t) =exd—i(hg+v)t], Ugy(t)=exp—ihgt). (18

2 — 2pz, cOSB +
It should be noticed thaty andv do not commute. Thus (pB;m|d(t);my) =N exp(— P p202 Btz
priori there is not a single basis of spin states where the
evolution operator is diagonal. Nevertheless, it can be argued xS 42 g)exn(inpShdL2
that the interactiom dominates over the free Hamiltoniag nz m(B)eXRliNp Sl (6).

That would indicate that the eigenstates qf which are (26)
states with definite spin projection along the magnetic field
(and hence coherent internal stafeshould play an impor- Note that this expression is equivalent to E8.3) in [10],
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where they expanded the wave function in components thatt?ASk. This leads to an analytic expression for the wave
had definite spin projections along the local magnetic fieldfunction, given by

This expression contains the qualitative features described ip _

the numerical calculation. There is a spin-flip probability, as pB;m(P(1), mp)

m# m,. The focusing effect appears when this adiabatic _ U _ on
wave function undergoes a free evolution during a tige = expliASt/12NY, d-(BexpinpSt | —
after the interaction. However, during the interaction time, n P
the probability distribution is frozen. xexp(— P = 2pyZo COSP = Z<2)>d1/2 8) (31)
2(1 +iAt) Ny =2
B. Pseudoadiabatic approximation where p,=p—-nASt/2. This wave function conserves the

The next approximation consists in neglecting the comSPin projection along the direction of the magnetic field.
mutator [hy,v]. This leads to thepseudoadiabatic approxi- Thus, the states with a definite spin projection along the
mation given by magnetic field in each position correspond to the coherent

internal states introduced in R¢¥]. So we call this approxi-
U(t) = exp(— itv)exp(— ithg) = expitSplg)Uy(t). (27) mation thecoherent-state approximatiomNote that in this

.approximation the wave function not only gets wider during

This expression also conserves the projection of the spi . . . o
o - ; e interacting region, but the components with different val-
along the direction of the magnetic field, but starting from a
ues oflg separate.

wave function that has evolved freely during the interaction
time t. The wave function has an analytic expression given

by D. Symmetrized approximation
p? - 2pz, COSB + 22 We can approximate the evolution operator by the follow-
(pB;m|d(t);me) =N exp(— 2(1+iAD) ) ing expression, which is correct up to commutators of fourth
order:
1/2 ; 1/2
an dom(/8)€XPinpSY i (5) U(t) = Ug(ti2)exp~ itv = (= it)*{[ho,u],v /12 U(t/2).
(29) (32

The difference of this expression with the adiabatic oneba\'/\leeglmtIng the terms that do not commute with we
e

lies in the fact that the Gaussian wave packet gets wid
during the interaction time, by a factqd +A?, which is the U(t) = explit?AS/24)U(t/2)explitSplg) Ug(t/2). (33)

widening of the free wave packet during the interaction time. _ _
The wave function can be written as

d(t);mg) = expliASt®/24 2)|d' (1); 4
C. Coherent-state approximation [0 (t);mo) = expliASTI24)Ug(t2)|®" (1) mo),  (34)

We consider the expansion of the evolution operator up te(vhere
the third order commutator. The following relations can be

derived: (pB;n|®’'(t);mpy =N exp(

—it)3
00 = exf " ([0 Jerpt- e xS ¢ Bexpl- inpSILZ (),
(39

><exp<

which, although it is not completely analytic, it can be ap-
This expression is the basis for an analytic treatment of th@lied to evaluate the expansion of the wave function in a
wave function. For that purpose, we note that the dominanlfnar_monlc oscillator ba3|s..Th|s approxm_atlon corresponds to
terms in the evolution operator are those which conserve thgPlit the effect ofq(t) during the interaction symmetrically,
spin projection along the direction of the magnetic field. Thet@king half of it before and half of it after the interaction.
strongly oscillating factor expritv) tends to cancel the terms Note that here also the evolution associated with the interac-
that do not conservés. We retain in the expansion only tion conserves the spin projection along the magnetic field.
those terms which commute with. This leads to the expres- We call this thesymmetrized approximation
sion

U(t) = expl- itPAS/12)explitSpl g)expl- itZASg,IB)UO(t). E. Comparison with the exact calculation
(30) We have performed calculations with all the approxima-
tions. We find that the qualitative characteristics of the exact
The operator ex@it?’ASp,ls), when acting on eigenstates of calculations discussed above, which are the focusing effect
I, generates a displacement gnwhich is given byp;=p; in the component which goes to negatiweralues and the

_ p°=2pzycosB+ 23)
2(1 +iAt/2)

—_it)2
= [ho,v])uoa). (29
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10° ¢ larger, because then there is more distortion introduced in the
wave function due to the combined effect of the interaction
and the free Hamiltonian.

A very interesting case is the limit— 0, S— o for fixed
values of AS Naively, one would expect that the adiabatic
| approximation would be adequate here, as the free Hamil-
.................. tonian hy is negligible compared to. However, this is not
-0 F e L - the case. As shown in Fig. 3, the adiabatic and pseudoadi-

103 ------------------- abatic approximations are rather poor, giving values of

""""""""""""""""""""" 1-0 of about a few percent. The coherent-state and symme-
e trized approximations are very good fA=0.015, but then
107°F Yame they become worse for smaller valuesAfNumerical cal-
culations are very difficult whe$ is large, because a large
oscillator basis is needed. An analytic solution of this limit-
01 02 03 04 05,06 07 08 09 ing case would be desirable.

A The interest of this limit caséA— 0, AS constank is not

only formal. In nuclear physics there are cases in which

exact one, as a function of the adiabaticity parameterSfée 2. weakly bour]d nuclei interact strongly with tar_getg dgrlng a
The value 1-©=0 correspond to perfect agreement. The solid Iinevfary short time, S,O ,that the quar_]tum_State IS §|gn|f|cantly
is the adiabatic approximation, the dashed line is the pseudoadflistorted. The validity of the adiabatic approximation in

abatic approximation, the dotted line is the coherent-state approxiN€se situations is open to debale].

mation, and the dot-dashed line is the symmetrized approximation. Note that in the definition of the overlap we allow for an

overall phase difference between the exact and approximate
presence of spin-flip components, appear in all the calcula\gr?v%&ré?sgglsé Tvr\]/'s g\ézr?rl:a?htiseebtg,?;enCrig?ne;:(?a?fj;t_
tions. The quantitative differences between the different ap-. y ) : bp

tions (coherent state and symmetrizezhly reproduce accu-

proaches arise in the momentum distribution of the spin flip !
component. This comes out symmetric in the adiabatic an t‘;lg qu;?a\i/eeofhtiui etﬁgftt\r,]\fsivii f?ggtt'gg Ecl(\;hter?eme)?fggt of
pseudoadiabatic approximatiotsame probability distribu- higher-order terms in the commutator series of the evolution

tion for positive and negative momentand not fully sym- ; .
metric in the coherent-state or symmetrized approximationsOperator’ which seem to affect only a global phase in the

in closer agreement with the exact calculations. Waé?) fvl\J/zC;lgg.from these approximations that a crucial fea-
To evaluate the quality of these approximations, we havgk'jr PP

caleiated i average of he overiap betveen e exact affs % 1% e AL et e st eevert e 1 e
approximate calculations. This overlap is defined as P pin proj 9

cal direction of the magnetic field. This is the basis of the
1 semiclassical calculation performed [@], in which the
O= > D (Dt = 1);mo|q)ap(t = 1)§mo>‘ . (36) states with definite spin projections along the local magnetic
Mo field were taken asoherent internal statesand hence their
They are displayed in Fig. 3, as a function of the adiabaticitynotion could be described in terms of trajectories.
parameterd, for a fixed value of the produckS=2, which Despite the fact that the approximations .d|scussed here,
determines the deviation of the center of the wave packet i§SPecially the coherent-state and symmetrized approxima-
the magnetic field, as shown in E@). The quantity 1-©is  tions, are very accurate, _they do not describe an important
about 10% for a wide range of valuesAf In particular, for effect of the exact evolution operator. In all the approaches
A=0.5 andS=4, 1-0=0.088 for the adiabatic calculation described here, the scattering amplitudes for given spin pro-
and 1-0=0.064 for the pseudoadiabatic calculation. On thg€ctions along they axis (the beam axisare equal, up to a
contrary, the symmetrized and coherent-state approximatiori1ase factor, to the amplitudes in which the spin projections
are much better, so that D-is about 0.1%. In particular, for are reversed. This is a result of the fact that only terms which
A=0.5 andS=4, 1-0=0.0015 for the coherent-state and commute withlg are allowed in the expansion of the evolu-
1-0=0.0006 for the symmetrized calculations. The reasor{!On operator.
for this better agreement arises from the fact that the
coherent-state and symmetrized calculations allow for the V. REEXAMINING THE STERN-GERLACH
distortion in the wave function produced by the magnetic EXPERIMENTS
field gradient, while for the adiabatic and pseudoadiabatic
calculations the effect of the field contributes only to a phase. In the textbook description of the Stern-Gerlach experi-
In all the calculations that we have performed, the qualityment, the deflection of the beam gives information of the
of the approximated calculations improves as one goes frorapin projection along the axis, which is the one that points
the adiabatic to the pseudoadiabatic to the coherent state aatbng the magnetic field at the center of the beam. The de-
finally to the symmetrized approximations. Globally consid-flection of the beam is not sensitive to the spin components
ered, the approximations deteriorate as the pro@#cgets  along other directions. If, for a spin-1/2 particle, the initial

FIG. 3. Overlaps of the approximate wave functions with the
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spin points along th& axis,m,=+1/2, thetextbook descrip- e a)
tion would indicate that the pattern of scattered particles ‘ o
would be completely equivalent to that one produced by a

mixture of 50%m,=+1/2 and 50%m,=-1/2 particles. The 001~

same would be true fan,=-1/2. So a Stern-Gerlach experi- 00051 ‘
ment is not expected to give any asymmetry between differ-
ent spin projections perpendicular to thexis. 0y

To investigate this question, we define the asymmetry for
a given axis as the difference in the probabilities of finding L
the scattered particles in a given position in faex) plane 001l
for the two spin projections. Thus, we have 10

-0.0054

Ax2) = 2 (xz;m®(1);me)(x,z;m O (t);mp) (Mgl o, mp),
mmymy
(37)

Ax2)= > (xz;md(t);my)
mmmymg

X(x,z;m[d(t);mp) (mplomp),  (38)

Ax2)= 2 (xzmd();mp)
mmymg

X (x,z;m[®(t);mp) (mgloy|mg).  (39)

Note that, in the standard description of the Stern-Gerlach 0 T T 0
experiment, the spin projection along thexis is conserved, 7 _10 10 X

and thus the asymmetries, and A, should vanish at all

points. This is not the case. As shown in Figb} there is a e c)

difference in the pattern of particles scattered depending on
the spin projection along the axis. This effect is found to

depend on the inhomogeneity of the magnetic field, which is 0.1y

determined byz,=By/B;o. If 7 is large, the inhomogeneity 0054

of the magnetic field explored by the beam is small and so is

A,. This asymmetry can be calculated, with various degrees o

of accuracy, making use of the approximate treatments dis-

cussed here. It can also be calculated with the semiclassical %7’ -
treatment of 7]. The origin of this asymmetry can be under- 01
stood by arguing that the motion in an inhomogeneous mag- 10

netic field conserves the spin projection along the local mag-
netic field, which has a different direction for the different
parts of the wave function. This links with the concept of
coherent internal states, which were introduced in . FIG. 4. Asymmetries for particles polarized along $éa), x

The calculations in Fig. @) show also that there is an () andz (c) directions. Note that the maximum asymmetry occurs
asymmetryA, which means that there is a dependence of thgoy particles polarized along treaxis, but that there are important
spin projection along thg axis. This is a dynamical effect, asymmetries for particles polarized along thandy axes.
which does not appear in the semiclassical description. In
fact, in the analytic approximations presented here, the value
of A, vanishes after the interaction. Only after allowing for jections along the axis. Indeed, this effect competes with
some time of free evolution do nonvanishing valuesA9f  the interactiorv = Splg, which tends to preserve the spin pro-
develop. The origin of this asymmetry arises from the termjection along the direction of the field. The result of this
ASpgl, which appears in the double commutdidty,v],v].  competition is that the magnitude of the asymmetry depends
The effect of this term can be understood becayses the  on the ratioAS/z,. Note that the asymmetr, is associated
generator of rotations in thex,z) plane, around the poit  to the dynamically generated terdSpgl,. This term de-
=0, z=-z,, where the field vanishes. The effect of this termpends on the spin projectidpbut is independent of or Py,
in the expansion of the evolution operator would generate &o the motion in thé/ direction is unaffected by the dynam-
rotation in the wave function around the point where the fieldics, and hence it is given by the free evolution of tte
vanishes, which will be opposite for the different spin pro-component of the initial wave packet.

7 -10 10 X
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The fact that all the asymmetries are nonvanishing andjive unequivocal information on the spin projection. The
also that they have different behavior as a functior{>qf) magnitude that determines how close a Stern-Gerlach experi-
leads to an exciting possibility. Consider that we have amentis to an ideal reliable measuremertyis oBy/B;. Only
beam of particles, so that we do not know their polarizatiorwhen the magnetic field, is very large compared to its
state. We can make the beam go through an inhomogeneogsadient or when the size of the beamis very small would
field, as described here, and detect the pattern of scatterélde Stern-Gerlach experiment approximate to an ideal reli-
particles. Let the polarization state be described initially as s@ble measurement.
density matrix p=1/2(1+p,oy+pyoy+p,0,), Wherep is a We have investigated different approximate treatments of
vector which measures the degree and direction of the beathe exact quantum mechanical problem. We find that, to a
polarization. Then, the density of particles detected in thegood approximation, the interaction occurs as if the spin pro-
(x,2) plane will be proportional to jection along the magnetic field at each position was con-
served. This indicates that, for each position in the inhomo-
geneous field, the states with a given spin projection along
the magnetic field are coherent internal states. Then, pro-

(40) vided that the quantum size of the wave function is small
compared to the inhomogeneity of the magnetic field, it is
This allows us to obtain all the components of the polariza-meaningful to approximate the motion of these states in
tion vector from the pattern of scattered particles, when aerms of classical trajectories. This justifies the treatment per-
sufficient number of particles are detected. Note that, in conformed in[7].
trast to expressior(40), the textbook description of the It is interesting to note that the adiabatic approximation is
Stern-Gerlach experiment would be consistent with a probnot accurate, even in the limit of sma&ll(large mass or short

P(2) = Pox,2) + 30, A (42)+ By A(x,2) + P, A ],

ability density given by interaction time, if, at the same time, the interaction is large
so that it generates a fixed deflection angle. This observation
P(x,2) = Py(x,2) + }pzAz(X,Z), can be relevant to cases, such as in nuclear phys8sin
2 which, although the collision times are short to guarantee the
validity of the adiabatic approximation, the forces are so
A,(x,2) =2Py(x,2), z>0, strong to produce a finite deflection.
Our calculations indicate that the Stern-Gerlach experi-
ASx,2) = - 2Py(x,2), z<O. (41) ~ mentis not an ideal measuring apparatus, in the sense of Ref.

) . ] _[5]. However, this does not mean that one cannot acquire
This expression, when applicable, would allow one to obtaimccurate knowledge from the spin state of the projectile by

information only on the value of,. observing the statistical results of the experiment. On the
contrary, while an idealized Stern-Gerlach experiment will
VI. SUMMARY AND CONCLUSIONS not give any information of the spin projection along ther

h . . h . ¢ icle with spin | y axis, the analysis of a realistic Stern-Gerlach experiment,
We have investigated the motion of a particle with spin ing,ch a5 modeled in our calculations, can give the value of all

an inhomogeneous magnetic field using a quantum mechanke components of the density matrix that describes the po-
cal framework. Our aim is to investigate in detail the limita- |5 ization of the beam.

tions of the usual textbook approach to Stern-Gerlach experi- o, analysis supports the idea that the interpretation of

ments, which assumes that the spin projection along thg,yistic experiments does not require the use of the reduc-
direction of the magnetic field is conserved, while different;; principle, as discussed by several authorELEH. Thus
Spin _component_s acquire a momentum which depends on tr1ﬁe interaction between the spin and magnetic field, which is
grad|enf[ of the field. . . . . . described in a purely quantum mechanical framework, gen-
We find that, consistently with a previous semiclassicalg ateg 5 correlation between the spin polarization of the beam
analysis, there is a sizable probability of spin flip, which 3ng the final position of the particles of the beam. A mea-
depends on the inhomogeneity of the field. Besides, there i§,rement of a sufficiently large number of these positions
a focusing effect in the component that deviates towards thgjows one to determine the components of the density ma-

direction in which the modulus of the field decreases. Thesg., of the beam with sufficient statistical accuracy. The re-
characteristics are very robust and occur in dynamical situag,,ction principle is not required in this argument.

tions which are far from the semiclassical limit.

Thus, we can conclude that the Stern-Gerlach experiment
is not, even in principle, an ideal experiment, which would
“project” the internal state into the eigenvalues of the mea- This work has been partially supported by the Spanish
surement operator. Moreover, the experiment is not fully reMCyT, Projects No. FPA2002-04181-C04-04 and BFM2002-
liable, as the positions or momenta of the particles do no063315.
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