103 research outputs found

    Neuromuscular blockade during therapeutic hypothermia after cardiac arrest: Observational study of neurological and infectious outcomes

    Get PDF
    AbstractIntroductionNeuromuscular blockade (NMB) is widely used during therapeutic hypothermia (TH) after cardiac arrest but its effect on patient outcomes is unclear. We compared the effects of NMB on neurological outcomes and frequency of early-onset pneumonia in cardiac-arrest survivors managed with TH.MethodsWe retrospectively studied consecutive adult cardiac-arrest survivors managed with TH in a tertiary-level intensive care unit between January 2008 and July 2013. Patients given continuous NMB for persistent shivering were compared to those managed without NMB. Cases of early-onset pneumonia and vital status at ICU discharge were recorded. To avoid bias due to between-group baseline differences, we adjusted the analysis on a propensity score.ResultsOf 311 cardiac-arrest survivors, 144 received TH, including 117 with continuous NMB and 27 without NMBs. ICU mortality was lower with NMB (hazard ratio [HR], 0.54 [0.32; 0.89], p=0.016) but the difference was not significant after adjustment on the propensity score (HR, 0.70 [0.39; 1.25], p=0.22). The proportion of patients with good neurological outcomes was not significantly different (36% with and 22% without NMB, p=0.16). Early-onset pneumonia was more common with NMB (HR, 2.36 [1.24; 4.50], p=0.009) but the difference was not significant after adjustment on the propensity score (HR, 1.68 [0.90; 3.16], p=0.10).ConclusionsContinuous intravenous NMB during TH after cardiac arrest has potential owns effects on ICU survival with a trend increase in the frequency of early-onset pneumonia. Randomised controlled trials are needed to define the role for NMB among treatments for TH-induced shivering

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes

    No full text
    International audienceThe quality and safety of food products depend on the microorganisms, the food characteristics and the process. The prediction of conditions that prevent growth in complex situations due to the characteristics of the process and of the food cannot be obtained by predictive models of bacterial growth only. Thus, a combined modelling approach was developed by integrating three models, which were selected in a first step: (1) a bacterial model that predicts the bacterial growth from the physico-chemical properties of the media; (2) a water transfer model that predicts the effects of the drying process variables on the medium characteristics; and (3) a thermodynamic model that predicts the water activity (a(w)) and the pH of the media from its composition. A second step consisted in separately validating each selected model in which all of the physical, chemical or biological parameters appearing in the equations were previously measured. The third step combined the three knowledge models. The global model was validated on the basis of experimental results concerning the growth of Listeria innocua on the surface of a gelatine gel, the surface of which was submitted to a drying process (changes in relative humidity and air velocity). It was shown that bacterial growth models had to be modified: a specific model was set up to predict the maximum growth rate and another for the lag. Additionally, growth models set up in broth could not be applied in gelatine, leading to the development of a specific growth model on a solid surface. The thermodynamic model accurately predicted the pH and a(w) of bacterial broth in which high concentrations of solutes were added, and those of the solid media, the gelatine. The water transfer model was applied on gelatine data to predict the evolution of its surface a, during the drying process. The three models-bacterial, water transfer and thermodynamic, separately validated-were combined according to an integrated modelling strategy. The water transfer model coupled with the thermodynamic model predicted the a(w) on the gel surface. The predicted surface a, explained why growth inhibition was observed. Indeed, growth stopped at a predicted surface a(w)< 0.94, corresponding to L. innocua minimum a, during the drying process. The global model satisfactorily predicted L. innocua growth on the surface of the gel. This study proves the validity of the approach and shows that the combination of the water transfer and thermodynamic models compensates for the lack of a(w) measurement techniques

    Obésité et diabète de type 2 chez l'enfant

    No full text
    POITIERS-BU Médecine pharmacie (861942103) / SudocSudocFranceF

    Cartographie des conditions favorables à la tique <i>Ixodes ricinus</i> en région Auvergne-Rhône-Alpes

    No full text
    MasterCartographie des conditions favorables à la tique Ixodes ricinus En région Auvergne-Rhône-Alpes Structure d'accueil : Unité Mixte de Recherche en Epidémiologie des maladies animales et zoonotiques (UMR EPI

    Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus

    No full text
    Staphylococcus xylosus, a coagulase-negative Staphylococcus, is frequently isolated from food products of animal origin and used as a starter culture in these products in which it contributes to their flavour, while Staphylococcus aureus, a coagulase-positive bacterium, causes foodborne intoxication and is implicated in a broad diversity of infections in medical sector, notably in nosocomial infections. S. xylosus and S. aureus are both capable of forming a biofilm and share the same ecological niches, thus we explored their interaction in biofilms with a view to limiting the risks associated with S. aureus. Cell-free supernatants of different strains of S. xylosus were able to inhibit the biofilm formation of S. aureus. The S. xylosus C2a strain released into the supernatant a molecule of molecular weight above 30kDa that is resistant to proteolytic enzymes and inhibits the formation of S. aureus MW2 biofilm, though the mechanism involved has yet to be elucidated. Furthermore, S. xylosus C2a modified the architecture of S. aureus MW2 in co-culture biofilm. Confocal laser scanning microscopy revealed that S. aureus formed a biofilm with a flat and compact structure while in co-culture with S. xylosus the two species formed large juxtaposed aggregates throughout the period of incubation. This architecture made the S. aureus biofilm more susceptible to detachment
    • …
    corecore