11 research outputs found

    The benefits of new innovative technologies for balancing the greenhouse gas emissions using atmospheric measurements

    No full text
    Au cours des trois derniĂšres dĂ©cennies, les programmes d'observation des GES se sont orientĂ©s vers des Ă©chelles de plus en plus fines. Il est devenu indispensable de dĂ©velopper les rĂ©seaux d'observation pour s'adapter aux Ă©chelles visĂ©es. On s'oriente Ă©galement vers une augmentation des espĂšces observables afin de disposer d'une palette de traceurs atmosphĂ©riques. Dans le cadre de l'infrastructure de recherche europĂ©enne ICOS, le Laboratoire des Sciences du Climat et de l’Environnement (LSCE) est en charge de la veille technologique en matiĂšre d’instruments de mesure des GES. Dans le cadre de ma thĂšse, j’ai Ă©valuĂ© en premier lieu les performances d’un spectromĂštre infrarouge Ă  transformĂ©e de Fourier (FTIR) ciblant cinq composĂ©s: N2O, CH4, CO, CO2 et son isotope 13CO2.Hormis le FTIR, d’autres nouvelles techniques sont apparues sur le marchĂ©, en particulier concernant la mesure du N2O. Contrairement au CO2 et CH4 les stations ICOS n'ont pas encore l'obligation de mesurer le N2O car aucun instrument n'a Ă©tĂ© reconnu comme suffisamment performant. Dans le cadre de ma thĂšse j'ai eu la responsabilitĂ© de faire l'Ă©valuation de sept analyseurs de N2O provenant de cinq constructeurs diffĂ©rents. GrĂące Ă  cette Ă©tude, j’ai pu regrouper les analyseurs en deux catĂ©gories : les instruments performants pour de hautes frĂ©quences de mesures (<1 min) et les instruments stables sur le long terme. La premiĂšre catĂ©gorie est plus adaptĂ©e aux mesures des Ă©changes avec les Ă©cosystĂšmes par la mĂ©thode des flux turbulents, alors que la deuxiĂšme permet le suivi Ă  haute prĂ©cision dans l'atmosphĂšre. La plupart des instruments prĂ©sentent une sensibilitĂ© aux variations de tempĂ©rature ambiante ainsi qu’une correction de la vapeur d’eau insuffisante (Lebegue et al., 2016).Par la suite, j’ai utilisĂ© les donnĂ©es de N2O obtenues avec le FTIR afin de dĂ©terminer les Ă©missions de ce gaz Ă  l’aide de la mĂ©thode Radon qui repose sur la corrĂ©lation entre l’accumulation nocturne du 222Rn et celle de N2O. L’instrument FTIR proposant une meilleure justesse de mesure que le GC utilisĂ© par le passĂ©, j’ai pu obtenir un plus grand nombre d’évĂšnements exploitables (+45%). Par la suite, j'ai installĂ© le FTIR sur le site de Trainou, une tour radio prĂšs d'OrlĂ©ans, dĂ©but 2014 afin de caractĂ©riser les gradients verticaux de N2O et 13CO2.Le LSCE a acquis en mars 2015 un spectromĂštre laser de marque Aerodyne Research dĂ©diĂ© Ă  l’étude des Ă©changes atmosphĂšre-biosphĂšre du carbone. Les trois composĂ©s cibles sont CO2, H2O et l’oxysulfure de carbone (COS). Dans la mesure oĂč les plantes assimilent COS et CO2 et qu’il n’existe pas de mĂ©canisme Ă©quivalent Ă  la respiration du CO2 pour le COS, l’absorption du COS par les plantes serait directement proportionnelle Ă  leur activitĂ© photosynthĂ©tique. Dans ce contexte, j’ai Ă©valuĂ© les performances de l’instrument Aerodyne puis comparĂ© ces derniĂšres Ă  celles du GC qui Ă©value depuis aoĂ»t 2014 les variations diurne et saisonniĂšre du rapport de mĂ©lange Ă  l’Orme des Merisiers. Enfin, j’ai installĂ© l’instrument Aerodyne Ă  la tour ICOS de Saclay afin d’y documenter les variations diurnes du gradient vertical de COS.Mes Ă©tudes montrent (1) que l'Aerodyne et le GC prĂ©sentent des performances similaires mais que l'Aerodyne a l’avantage de nĂ©cessiter une maintenance nettement moins importante, et (2) que l’instrument Aerodyne est capable de dĂ©tecter un gradient vertical de quelques ppt en pĂ©riode de stratification nocturne. Dans cette partie de mon travail de thĂšse, j’évalue aussi les variations saisonniĂšres du COS dans la basse troposphĂšre, dĂ©terminĂ©es Ă  partir des donnĂ©es GC, que je compare Ă  d’autres sites Ă  travers le monde. J’ai Ă©galement pu estimer sur cette pĂ©riode, par la mĂ©thode Radon, les vitesses de dĂ©pĂŽt de COS sur le Plateau de Saclay. Cette mĂ©thode m’a permis de mettre en Ă©vidence l’existence d’un puits nocturne de COS dans la rĂ©gion du plateau de Saclay qui demeure actif quasiment tout au long de l’annĂ©e.During the last three decades, GHG observations programs went towards ever smaller scales, and it is becoming necessary to develop observation networks and adapt them to the different scales studied. Besides denser networks, we are going toward an increase of the species monitored in order to have a wide range of atmospheric tracers available to identify processes. As a member of the European research program ICOS (Integrated Carbon Observing System), the LSCE (Laboratoire des Sciences du Climat et de l’Environnement) is in charge of technological watch for GHG measuring analyzers. In the scope of my thesis, I first tested a Fourier Transform Infra-Red Spectrometer (FTIR) commercialized by Ecotech which can analyze five species: N2O, CH4, CO, CO2 and its isotope 13CO2.Apart of the FTIR, other new technologies appeared on the market, particularly relating to N2O measurements. Unlike CO2 and CH4, ICOS stations don’t require measuring N2O, as no instrument has been found to be performant enough concerning measurement precision and reliability for the ICOS network. During my thesis, I had the responsibility to make an exhaustive evaluation of seven analyzers of N2O from five different manufacturers. I’ve been able to gather the analyzers in two categories: those with good high frequency measurements (< 1 min) and those which are stable over long periods. The first category is particularly adapted to measurement of exchange rates between different ecosystems, whereas the second allows for high precision monitoring of the atmosphere. Most instruments show dependence to ambient temperature variations as well as a water vapor correction either useless or lacking (Lebegue et al., AMT, 2016).Then, I used N2O measurements from the FTIR in order to determine night emissions of this gas by using the Radon method which calculates the correlation between the nocturnal accumulation of 222Rn and N2O. Thanks to the better repeatability of the FTIR over the gas chromatograph one, I have been able to obtain more workable events than with the GC (+45%). Start of 2014, I installed the FTIR at the Trainou station, a radio tower near OrlĂ©ans, in order to document the vertical gradients of N2O and 13CO2.The LSCE received in March 2015 a laser spectrometer from Aerodyne Research dedicated to the study of atmosphere/biosphere carbon fluxes. Three species are analyzed, CO2, H2O and carbonyl sulfide (COS) for which the mixing ratio in the troposphere is a million times smaller than CO2’s. Considering that vegetation assimilate COS and CO2 in similar proportions and that there is no mechanism similar to respiration for COS, the absorption of COS by the vegetation should be directly proportional to the photosynthetic activity. In this respect, I have characterized the performances of the new instrument Aerodyne. I then compared measurements of COS from this instrument to those obtained with a GC which document, since August 2014, the diurnal and seasonal variations of COS mixing ratios and fluxes at the LSCE. Finally, I installed the Aerodyne analyzer at the ICOS tower of Saclay in order to document the diurnal variations of the vertical gradient of COS during the winter period.My studies showed (1) that the Aerodyne and the GC show similar performances although the Aerodyne analyzer has the advantage of needing less maintenance, and (2) that the Aerodyne analyzer is able to detect a vertical gradient of a few ppt during a nocturnal stratification. Here, I also study the seasonal variations of COS in the low troposphere, from GC data, which I compare to other stations across the world. I’ve also been able to estimate over this period, with the Radon method, the deposition velocity of COS over the Saclay plateau. Thanks to this method, I was able to document a nocturnal sink active for almost the full year over the Saclay Plateau

    L'apport des nouvelles technologies de mesure pour la caractérisation des sources et puits de gaz à effet de serre

    No full text
    During the last three decades, GHG observations programs went towards ever smaller scales, and it is becoming necessary to develop observation networks and adapt them to the different scales studied. Besides denser networks, we are going toward an increase of the species monitored in order to have a wide range of atmospheric tracers available to identify processes. As a member of the European research program ICOS (Integrated Carbon Observing System), the LSCE (Laboratoire des Sciences du Climat et de l’Environnement) is in charge of technological watch for GHG measuring analyzers. In the scope of my thesis, I first tested a Fourier Transform Infra-Red Spectrometer (FTIR) commercialized by Ecotech which can analyze five species: N2O, CH4, CO, CO2 and its isotope 13CO2.Apart of the FTIR, other new technologies appeared on the market, particularly relating to N2O measurements. Unlike CO2 and CH4, ICOS stations don’t require measuring N2O, as no instrument has been found to be performant enough concerning measurement precision and reliability for the ICOS network. During my thesis, I had the responsibility to make an exhaustive evaluation of seven analyzers of N2O from five different manufacturers. I’ve been able to gather the analyzers in two categories: those with good high frequency measurements (< 1 min) and those which are stable over long periods. The first category is particularly adapted to measurement of exchange rates between different ecosystems, whereas the second allows for high precision monitoring of the atmosphere. Most instruments show dependence to ambient temperature variations as well as a water vapor correction either useless or lacking (Lebegue et al., AMT, 2016).Then, I used N2O measurements from the FTIR in order to determine night emissions of this gas by using the Radon method which calculates the correlation between the nocturnal accumulation of 222Rn and N2O. Thanks to the better repeatability of the FTIR over the gas chromatograph one, I have been able to obtain more workable events than with the GC (+45%). Start of 2014, I installed the FTIR at the Trainou station, a radio tower near OrlĂ©ans, in order to document the vertical gradients of N2O and 13CO2.The LSCE received in March 2015 a laser spectrometer from Aerodyne Research dedicated to the study of atmosphere/biosphere carbon fluxes. Three species are analyzed, CO2, H2O and carbonyl sulfide (COS) for which the mixing ratio in the troposphere is a million times smaller than CO2’s. Considering that vegetation assimilate COS and CO2 in similar proportions and that there is no mechanism similar to respiration for COS, the absorption of COS by the vegetation should be directly proportional to the photosynthetic activity. In this respect, I have characterized the performances of the new instrument Aerodyne. I then compared measurements of COS from this instrument to those obtained with a GC which document, since August 2014, the diurnal and seasonal variations of COS mixing ratios and fluxes at the LSCE. Finally, I installed the Aerodyne analyzer at the ICOS tower of Saclay in order to document the diurnal variations of the vertical gradient of COS during the winter period.My studies showed (1) that the Aerodyne and the GC show similar performances although the Aerodyne analyzer has the advantage of needing less maintenance, and (2) that the Aerodyne analyzer is able to detect a vertical gradient of a few ppt during a nocturnal stratification. Here, I also study the seasonal variations of COS in the low troposphere, from GC data, which I compare to other stations across the world. I’ve also been able to estimate over this period, with the Radon method, the deposition velocity of COS over the Saclay plateau. Thanks to this method, I was able to document a nocturnal sink active for almost the full year over the Saclay Plateau.Au cours des trois derniĂšres dĂ©cennies, les programmes d'observation des GES se sont orientĂ©s vers des Ă©chelles de plus en plus fines. Il est devenu indispensable de dĂ©velopper les rĂ©seaux d'observation pour s'adapter aux Ă©chelles visĂ©es. On s'oriente Ă©galement vers une augmentation des espĂšces observables afin de disposer d'une palette de traceurs atmosphĂ©riques. Dans le cadre de l'infrastructure de recherche europĂ©enne ICOS, le Laboratoire des Sciences du Climat et de l’Environnement (LSCE) est en charge de la veille technologique en matiĂšre d’instruments de mesure des GES. Dans le cadre de ma thĂšse, j’ai Ă©valuĂ© en premier lieu les performances d’un spectromĂštre infrarouge Ă  transformĂ©e de Fourier (FTIR) ciblant cinq composĂ©s: N2O, CH4, CO, CO2 et son isotope 13CO2.Hormis le FTIR, d’autres nouvelles techniques sont apparues sur le marchĂ©, en particulier concernant la mesure du N2O. Contrairement au CO2 et CH4 les stations ICOS n'ont pas encore l'obligation de mesurer le N2O car aucun instrument n'a Ă©tĂ© reconnu comme suffisamment performant. Dans le cadre de ma thĂšse j'ai eu la responsabilitĂ© de faire l'Ă©valuation de sept analyseurs de N2O provenant de cinq constructeurs diffĂ©rents. GrĂące Ă  cette Ă©tude, j’ai pu regrouper les analyseurs en deux catĂ©gories : les instruments performants pour de hautes frĂ©quences de mesures (<1 min) et les instruments stables sur le long terme. La premiĂšre catĂ©gorie est plus adaptĂ©e aux mesures des Ă©changes avec les Ă©cosystĂšmes par la mĂ©thode des flux turbulents, alors que la deuxiĂšme permet le suivi Ă  haute prĂ©cision dans l'atmosphĂšre. La plupart des instruments prĂ©sentent une sensibilitĂ© aux variations de tempĂ©rature ambiante ainsi qu’une correction de la vapeur d’eau insuffisante (Lebegue et al., 2016).Par la suite, j’ai utilisĂ© les donnĂ©es de N2O obtenues avec le FTIR afin de dĂ©terminer les Ă©missions de ce gaz Ă  l’aide de la mĂ©thode Radon qui repose sur la corrĂ©lation entre l’accumulation nocturne du 222Rn et celle de N2O. L’instrument FTIR proposant une meilleure justesse de mesure que le GC utilisĂ© par le passĂ©, j’ai pu obtenir un plus grand nombre d’évĂšnements exploitables (+45%). Par la suite, j'ai installĂ© le FTIR sur le site de Trainou, une tour radio prĂšs d'OrlĂ©ans, dĂ©but 2014 afin de caractĂ©riser les gradients verticaux de N2O et 13CO2.Le LSCE a acquis en mars 2015 un spectromĂštre laser de marque Aerodyne Research dĂ©diĂ© Ă  l’étude des Ă©changes atmosphĂšre-biosphĂšre du carbone. Les trois composĂ©s cibles sont CO2, H2O et l’oxysulfure de carbone (COS). Dans la mesure oĂč les plantes assimilent COS et CO2 et qu’il n’existe pas de mĂ©canisme Ă©quivalent Ă  la respiration du CO2 pour le COS, l’absorption du COS par les plantes serait directement proportionnelle Ă  leur activitĂ© photosynthĂ©tique. Dans ce contexte, j’ai Ă©valuĂ© les performances de l’instrument Aerodyne puis comparĂ© ces derniĂšres Ă  celles du GC qui Ă©value depuis aoĂ»t 2014 les variations diurne et saisonniĂšre du rapport de mĂ©lange Ă  l’Orme des Merisiers. Enfin, j’ai installĂ© l’instrument Aerodyne Ă  la tour ICOS de Saclay afin d’y documenter les variations diurnes du gradient vertical de COS.Mes Ă©tudes montrent (1) que l'Aerodyne et le GC prĂ©sentent des performances similaires mais que l'Aerodyne a l’avantage de nĂ©cessiter une maintenance nettement moins importante, et (2) que l’instrument Aerodyne est capable de dĂ©tecter un gradient vertical de quelques ppt en pĂ©riode de stratification nocturne. Dans cette partie de mon travail de thĂšse, j’évalue aussi les variations saisonniĂšres du COS dans la basse troposphĂšre, dĂ©terminĂ©es Ă  partir des donnĂ©es GC, que je compare Ă  d’autres sites Ă  travers le monde. J’ai Ă©galement pu estimer sur cette pĂ©riode, par la mĂ©thode Radon, les vitesses de dĂ©pĂŽt de COS sur le Plateau de Saclay. Cette mĂ©thode m’a permis de mettre en Ă©vidence l’existence d’un puits nocturne de COS dans la rĂ©gion du plateau de Saclay qui demeure actif quasiment tout au long de l’annĂ©e

    Comparison of nitrous oxide (N<sub>2</sub>O) analyzers for high-precision measurements of atmospheric mole fractions

    Get PDF
    International audienceOver the last few decades, in situ measurements of atmospheric N 2 O mole fractions have been performed using gas chromatographs (GCs) equipped with electron capture detectors. This technique, however, becomes very challenging when trying to detect the small variations of N 2 O as the detectors are highly nonlinear and the GCs at remote stations require a considerable amount of maintenance by qualified technicians to maintain good short-term and long-term re-peatability. With new robust optical spectrometers now available for N 2 O measurements, we aim to identify a robust and stable analyzer that can be integrated into atmospheric monitoring networks, such as the Integrated Carbon Observation System (ICOS). In this study, we present the most complete comparison of N 2 O analyzers, with seven analyzers that were developed and commercialized by five different companies. Each instrument was characterized during a time period of approximately 8 weeks. The test protocols included the characterization of the short-term and long-term repeatability, drift, temperature dependence, linearity and sensitivity to water vapor. During the test period, ambient air measurements were compared under field conditions at the Gif-sur-Yvette station. All of the analyzers showed a standard deviation better than 0.1 ppb for the 10 min averages. Some analyzers would benefit from improvements in temperature stability to reduce the instrument drift, which could then help in reducing the frequency of calibrations. For most instruments, the water vapor correction algorithms applied by companies are not sufficient for high-precision atmospheric measurements, which results in the need to dry the ambient air prior to analysis

    A top-down approach of sources and non-photosynthetic sinks of carbonyl sulfide from atmospheric measurements over multiple years in the Paris region (France)

    No full text
    International audienceCarbonyl sulfide (COS) has been proposed as a proxy for carbon dioxide (CO2) taken up by plants at the leaf and ecosystem scales. However, several additional production and removal processes have been identified which could complicate its use at larger scales, among which are soil uptake, dark uptake by plants, and soil and anthropogenic emissions. This study evaluates the significance of these processes at the regional scale through a top-down approach based on atmospheric COS measurements at Gif-sur-Yvette (GIF), a suburban site near Paris (France). Over a period of four and a half years, hourly measurements at 7 m above ground level were performed by gas chromatography and combined with 222Radon measurements to calculate nocturnal COS fluxes using the Radon-Tracer Method. In addition, the vertical distribution of COS was investigated at a second site, 2 km away from GIF, where a fast gas analyzer deployed on a 100 m tower for several months during winter 2015–2016 recorded mixing ratios at 3 heights (15, 60 and 100 m). COS appears to be homogeneously distributed both horizontally and vertically in the sampling area. The main finding is that the area is a persistent COS sink even during wintertime episodes of strong pollution. Nighttime net uptake rates ranged from -1.5 to -32.8 pmol m-2 s-1, with an average of -7.3 ± 4.5 pmol m-2 s-1 (n = 253). However, episodes of biogenic emissions happened each year in June-July (11.9 ± 6.2 pmol m-2 s-1, n = 24). Preliminary analyses of simulated footprints of source areas influencing the recorded COS data suggest that long-range transport of COS from anthropogenic sources located in Benelux, Eastern France and Germany occasionally impacts the Paris area during wintertime. These production and removal processes may limit the use of COS to assess regional-scale CO2 uptake in Europe by plants through inverse modeling

    Cold-atom sources for the Matter-wave laser Interferometric Gravitation Antenna (MIGA)

    No full text
    International audienceAbstract The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline. This article presents the cold-atom sources of MIGA, focusing on the design choices, the realization of the systems, the performances and the integration within the MIGA instrument
    corecore