7 research outputs found

    Copper Recovery from Water of Soryinskoye Tailing Pond

    Get PDF
    The large volume of recycling waters from the Soryinskoye tailing pond (up to 1300 m3/h) offers interesting possibilities for processing concentrates despite the low copper content (5.2-16.4 mg/l). Sulfides precipitation is the most efficient method of heavy metal ions removal from water. In this study, a sulfur solution in sodium hydroxide was used as a sulfidizing agent for precipitation. Commercial liquid alkali (NaOH – 46) and commercial sulfur were the initial agents. Due to the concentrated alkali, dissolution could be carried out at 115-120∘С, which is higher than the melting point of sulfur. Stable solutions were obtained at a weight ratio of NaOH: S = 1: 1 and a sulfur concentration of 350 g/l. During the laboratory and scale-up laboratory tests, the optimal consumption of sulfidizing agent was determined (110% of the stoichiometry for the formation of Cu2S, and copper extraction into the precipitate from the solution was more than 90.0% with high selectivity towards Zn and Fe). An extended analysis of the composition of the sediment (x-ray fluorescence spectrometer SPECTRO XEPOS) obtained during pilot trials showed that the main elements are, %: sulfur 58.4; oxygen 16.2; copper 8.9; iron 5.7; calcium 4.7 and arsenic 3.8. The total fraction of impurity elements does not exceed 2.3%. This study assumes use of the product conditioning to obtain concentrate with increased copper content and sulfur return to sulfidation stage. Keywords: acid mine drainage, copper recovery, chemical treatment, sulfide precipitatio

    Magnetic field - temperature phase diagram of quasi-two-dimensional organic superconductor lambda-(BETS)_2 GaCl_4 studied via thermal conductivity

    Full text link
    The thermal conductivity kappa of the quasi-two-dimensional (Q2D) organic superconductor lambda-(BETS)_2 GaCl_4 was studied in the magnetic field H applied parallel to the Q2D plane. The phase diagram determined from this bulk measurement shows notable dependence on the sample quality. In dirty samples the upper critical field H_{c2} is consistent with the Pauli paramagnetic limiting, and a sharp change is observed in kappa(H) at H_{c2 parallel}. In contrast in clean samples H_{c2}(T) shows no saturation towards low temperatures and the feature in kappa(H) is replaced by two slope changes reminiscent of second-order transitions. The peculiarity was observed below ~ 0.33T_c and disappeared on field inclination to the plane when the orbital suppression of superconductivity became dominant. This behavior is consistent with the formation of a superconducting state with spatially modulated order parameter in clean samples.Comment: 10 pages, 8 figures, new figure (Fig.5) and references added, title change

    Organic Superconductors: when correlations and magnetism walk in

    Full text link
    This survey provides a brief account for the start of organic superconductivity motivated by the quest for high Tc superconductors and its development since the eighties'. Besides superconductivity found in 1D organics in 1980, progresses in this field of research have contributed to better understand the physics of low dimensional conductors highlighted by the wealth of new remarkable properties. Correlations conspire to govern the low temperature properties of the metallic phase. The contribution of antiferromagnetic fluctuations to the interchain Cooper pairing proposed by the theory is borne out by experimental investigations and supports supercondutivity emerging from a non Fermi liquid background. Quasi one dimensional organic superconductors can therefore be considered as simple prototype systems for the more complex high Tc materials.Comment: 41 pages, 21 figures to be published in Journal of Superconductivity and Novel Magnetis

    Opportunities in Flavour Physics at the HL-LHC and HE-LHC

    No full text
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pTp_T searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras

    Opportunities in Flavour Physics at the HL-LHC and HE-LHC

    No full text
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pTp_T searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    No full text
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena
    corecore