112 research outputs found

    Methodology for Development of a 600-Year Tree-Ring Multi-Element Record for Larch from the Taymir Peninsula, Russia

    Get PDF
    We developed a long (600-year) dataset for the concentrations of 26 elements in tree rings of larch from the Taymir Peninsula, the northernmost region in the world (ca. 72°N) where trees grow. Tree rings corresponding to the time period from 1300 to 1900 A.D. were studied. Eleven wood strips, each from a different larch tree, were cut into ca. 100 mg samples usually consisting of ten consecutive tree rings (but occasionally five). Between 19 and 40 consecutive samples resulted from each tree, yielding a total of 277 samples. The replication of each time interval ranged from three (for periods 1300-1400 A.D. and 1600-1700 A.D.) to six (for 1450-1600 A.D.). Wood samples were digested with concentrated HNO 3 for measurement of Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th, and U using solution Inductively Coupled Plasma Mass Spectrometry (ICPMS). Fourteen elements (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th, and U) with extremely low concentrations were eliminated from consideration as unreliable. Here we report our sample preparation and measurement procedure, as well as the observed concentrations in tree rings, emphasizing considerations for developing representative and reliable denrodochemical datasets.Нами был получен длительный массив данных (600 лет) концентраций 26 элементов в годичных кольцах лиственницы с полуострова Таймыр, самого северного региона в мире (около 72° с.ш.), где возможен рост деревьев. Изучались годичные кольца, соответствующие промежутку времени с 1300 по 1900 год н.э. Одиннадцать древесных выпилов, по одному для каждой лиственницы, нарезались на образцы массой около 100 мг, которые, как правило, состояли из десяти годичных колец (но в некоторых случаях из пяти). Из каждого дерева было получено от 19 до 40 последовательных образцов, что дало в общей сложности 277 образцов. Повторность для каждого временного интервала варьировала от трех (для периодов 1300-1400 г.н.э. и 1600-1700 г.н.э.) до шести (для периода 1450-1600 г.н.э.). Древесные образцы растворяли в концентрированной HNO 3 для последующего измерения Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th и U при помощи масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) для растворов. Четырнадцать элементов (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th и U) с очень низкими концентрациями были исключены из рассмотрения как недостоверные. В данной статье, основной целью которой являлась отработка методики получения репрезентативных и достоверных дендрохимических данных, приводится использованная нами процедура пробоподготовки и измерений, а также полученные концентрации в годичных кольцах

    A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Get PDF
    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization towards any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain. This article is protected by copyright. All rights reserved.Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain

    Natural climate solutions for the United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517

    Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries

    Get PDF
    The Asian Summer Monsoon (ASM) affects ecosystems, biodiversity, and food security of billions of people. In recent decades, ASM strength (as represented by precipitation) has been decreasing, but instrumental measurements span only a short period of time. The initiation and the dynamics of the recent trend are unclear. Here for the first time, we use an ensemble of 10 tree ring-width chronologies from the west-central margin of ASM to reconstruct detail of ASM variability back to 1566 CE. The reconstruction captures weak/strong ASM events and also reflects major locust plagues. Notably, we found an unprecedented 80-year trend of decreasing ASM strength within the context of the 448-year reconstruction, which is contrary to what is expected from greenhouse warming. Our coupled climate model shows that increasing anthropogenic sulfate aerosol emissions over the Northern Hemisphere could be the dominant factor contributing to the ASM decrease. Plan Language Summary Monsoonal rainfall has a certain influence on agriculture and industry in the regions of Asian Summer Monsoon (ASM). An understanding of the spatial-temporal variability of the ASM and the associated dynamics is vital for terrestrial ecosystems, water resources, forests, and landscapes. We have developed a 448-year ASM reconstruction back to 1566 CE using 10 tree ring chronologies from the margin region of ASM. We find that historical severe droughts and locust plague disasters during weak ASM events. The recent decreasing ASM trend persisting for over 80 years is unprecedented over the past 448 years. Coupled climate models show that increasing anthropogenic aerosol emissions are the dominant underlying factor. Our aim is that the time series will find a wide range of utility for understanding past climate variability and for predicting future climate change.National Natural Science Foundation of China [41630531]; National Research Program for Key Issues in Air Pollution Control [DQGG0104]; Chinese Academy of Sciences [QYZDJ-SSW-DQC021, XDPB05, GJHZ1777]; Institute of Earth Environment, Chinese Academy of Sciences; State Key Laboratory of Loess and Quaternary Geology6 month embargo; first published: 09 April 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Mapping HIV-1 Vaccine Induced T-Cell Responses: Bias towards Less-Conserved Regions and Potential Impact on Vaccine Efficacy in the Step Study

    Get PDF
    T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    corecore