29 research outputs found

    Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion

    Get PDF
    Wild boar (Sus scrofa) drastically colonized mainland Eurasia and North Africa, most likely from East Asia during the Plio-Pleistocene (2–1Mya). In recent studies, based on genome-wide information, it was hypothesized that wild boar did not replace the species it encountered, but instead exchanged genetic materials with them through admixture. The highly endangered pygmy hog (Porcula salvania) is the only suid species in mainland Eurasia known to have outlived this expansion, and therefore provides a unique opportunity to test this hybridization hypothesis. Analyses of pygmy hog genomes indicate that despite large phylogenetic divergence (~2 My), wild boar and pygmy hog did indeed interbreed as the former expanded across Eurasia. In addition, we also assess the taxonomic placement of the donor of another introgression, pertaining to a now-extinct species with a deep phylogenetic placement in the Suidae tree. Altogether, our analyses indicate that the rapid spread of wild boar was facilitated by inter-specific/inter-generic admixtures.</p

    Somatic evolution and global expansion of an ancient transmissible cancer lineage

    Get PDF
    Made available in DSpace on 2019-10-06T15:53:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-02GPD Charitable TrustLeverhulme TrustThe canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.Transmissible Cancer Group Department of Veterinary Medicine University of CambridgeAnimal Management in Rural and Remote Indigenous Communities (AMRRIC)World VetsAnimal Shelter Stichting Dierenbescherming SurinameSikkim Anti-Rabies and Animal Health Programme Department of Animal Husbandry Livestock Fisheries and Veterinary Services Government of SikkimRoyal (Dick) School of Veterinary Studies Roslin Institute University of Edinburgh Easter Bush CampusConserLab Animal Preventive Medicine Department Faculty of Animal and Veterinary Sciences University of ChileCorozal Veterinary Hospital University of PanamáSt. George's UniversityNakuru District Veterinary Scheme LtdAnimal Medical CentreInternational Animal Welfare Training Institute UC Davis School of Veterinary MedicineCentro Universitário de Rio Preto (UNIRP)Department of Clinical and Veterinary Surgery São Paulo State University (UNESP)Ladybrand Animal ClinicVeterinary Clinic Sr. Dog'sWorld Vets Latin America Veterinary Training CenterNational Veterinary Research InstituteAnimal ClinicIntermunicipal Stray Animals Care Centre (DIKEPAZ)Animal Protection Society of SamoaFaculty of Veterinary Science University of ZuliaVeterinary Clinic BIOCONTROLFaculty of Veterinary Medicine School of Health Sciences University of ThessalyVeterinary Clinic El Roble Animal Healthcare Network Faculty of Animal and Veterinary Sciences University of ChileOnevetGroup Hospital Veterinário BernaUniversidade Vila VelhaVeterinary Clinic ZoovetservisÉcole Inter-états des Sciences et Médecine Vétérinaires de DakarDepartment of Small Animal Medicine Faculty of Veterinary Medicine Utrecht UniversityVetexpert Veterinary GroupVeterinary Clinic Lopez QuintanaClinique Veterinaire de Grand Fond Saint Gilles les BainsDepartment of Veterinary Sciences University of MessinaFacultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoSchool of Veterinary Medicine Universidad de las AméricasCancer Development and Innate Immune Evasion Lab Champalimaud Center for the UnknownTouray and Meyer Vet ClinicHillside Animal HospitalKampala Veterinary SurgeryAsavet Veterinary CharitiesVets Beyond BordersFaculty of Veterinary Medicine Autonomous University of YucatanLaboratorio de Patología Veterinaria Universidad de CaldasInterdisciplinary Centre of Research in Animal Health (CIISA) Faculty of Veterinary Medicine University of LisbonFour Paws InternationalHelp in SufferingVeterinary Clinic Dr José RojasDepartment of Biotechnology Balochistan University of Information Technology Engineering and Management SciencesCorozal Veterinary ClinicVeterinary Clinic VetmasterState Hospital of Veterinary MedicineJomo Kenyatta University of Agriculture and TechnologyLaboratory of Biomedicine and Regenerative Medicine Department of Clinical Sciences Faculty of Animal and Veterinary Sciences University of ChileFaculty of Veterinary and Agricultural Sciences University of MelbourneAnimal Anti Cruelty LeagueClinical Sciences Department Faculty of Veterinary Medicine BucharestDepartment of Pathology Faculty of Veterinary Medicine Ankara UniversityFaculty of Veterinary Sciences National University of AsuncionLilongwe Society for Protection and Care of Animals (LSPCA)Wellcome Sanger InstituteDepartment of Cellular and Molecular Medicine University of California San DiegoDepartment of Clinical and Veterinary Surgery São Paulo State University (UNESP)Leverhulme Trust: 102942/Z/13/

    Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer.

    Get PDF
    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution.Wellcome Trust Investigator Award, 102942/Z/13/A Elizabeth P Murchison Leverhulme Trust Philip Leverhulme Prize Elizabeth P Murchison Royal Society Research Grant, RG130615 Elizabeth P Murchiso

    Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer

    Get PDF
    Abstract: Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for ‘selfish’ traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby ‘selfish’ positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells

    In utero origin of myelofibrosis presenting in adult monozygotic twins

    No full text
    The latency between acquisition of an initiating somatic driver mutation by a single-cell and clinical presentation with cancer is largely unknown. We describe a remarkable case of monozygotic twins presenting with CALR mutation-positive myeloproliferative neoplasms (MPNs) (aged 37 and 38 years), with a clinical phenotype of primary myelofibrosis. The CALR mutation was absent in T cells and dermal fibroblasts, confirming somatic acquisition. Whole-genome sequencing lineage tracing revealed a common clonal origin of the CALR-mutant MPN clone, which occurred in utero followed by twin-to-twin transplacental transmission and subsequent similar disease latency. Index sorting and single-colony genotyping revealed phenotypic hematopoietic stem cells (HSCs) as the likely MPN-propagating cell. Furthermore, neonatal blood spot analysis confirmed in utero origin of the JAK2V617F mutation in a patient presenting with polycythemia vera (aged 34 years). These findings provide a unique window into the prolonged evolutionary dynamics of MPNs and fitness advantage exerted by MPN-associated driver mutations in HSCs

    Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer.

    No full text
    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution

    Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

    No full text
    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    No full text
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world’s largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ~30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death
    corecore