2,606 research outputs found

    A Molecular Platinum Cluster Junction: A Single-Molecule Switch

    Full text link
    We present a theoretical study of the electronic transport through single-molecule junctions incorporating a Pt6 metal cluster bound within an organic framework. We show that the insertion of this molecule between a pair of electrodes leads to a fully atomically engineered nano-metallic device with high conductance at the Fermi level and two sequential high on/off switching states. The origin of this property can be traced back to the existence of a HOMO which consists of two degenerate and asymmetric orbitals, lying close in energy to the Fermi level of the metallic leads. Their degeneracy is broken when the molecule is contacted to the leads, giving rise to two resonances which become pinned close to the Fermi level and display destructive interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am. Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ

    Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    Get PDF
    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed

    Unequal relationships in high and low power distance societies: a comparative study of tutor - student role relations in Britain and China

    Get PDF
    This study investigated people's conceptions of an unequal role relationship in two different types of society: a high power distance society and a low power distance society. The study focuses on the role relationship of tutor and student. British and Chinese tutors and postgraduate students completed a questionnaire that probed their conceptions of degrees of power differential and social distance/closeness in this role relationship. ANOVA results yielded a significant nationality effect for both aspects. Chinese respondents judged the relationship to be closer and to have a greater power differential than did British respondents. Written comments on the questionnaire and interviews with 9 Chinese academics who had experienced both British and Chinese academic environments supported the statistical findings and indicated that there are fundamental ideological differences associated with the differing conceptions. The results are discussed in relation to Western and Asian concepts of leadership and differing perspectives on the compatibility/incompatibility of power and distance/closeness

    Low Risk Technique for Sample Acquisition from Remote and Hazardous Sites on a Comet

    Get PDF
    This paper describes a mission comet sampling strategy, known as CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return), which was proposed for NASA New Frontiers 2017. The proposal was led by Applied Physics Lab (APL) with partners Goddard Space Flight Center (GSFC) and Deutsches Zentrum fr Luft- und Raumfahrt (DLR). The mission concept is to launch a projectile from a satellite that is capable of gathering a 300 cc sample. The projectile is tethered and is reeled back to the spacecraft after gathering the sample. Once back at the spacecraft, a robotic manipulator extracts the sample cartridge and places the cartridge into an earth return vehicle (ERV). This method has the following favorable characteristics: 1. Places the mission at minimal risk by isolating the spacecraft from the comet 2. Allows access to remote and otherwise inaccessible locations 3. Permits deep penetration into the surfac

    Multifunctional nanoparticles for drug/gene delivery in nanomedicine

    Get PDF
    Multifunctional nanoparticles hold great promise for drug/gene delivery. Multilayered nanoparticles can act as nanomedical systems with on-board "molecular programming" to accomplish complex multi-step tasks. For example, the targeting process has only begun when the nanosystem has found the correct diseased cell of interest. Then it must pass the cell membrane and avoid enzymatic destruction within the endosomes of the cell. Since the nanosystem is only about one millionth the volume of a human cell, for it to have therapeutic efficacy with its contained package, it must deliver that drug or gene to the appropriate site within the living cell. The successive delayering of these nanosystems in a controlled fashion allows the system to accomplish operations that would be difficult or impossible to do with even complex single molecules. In addition, portions of the nanosystem may be protected from premature degradation or mistargeting to non-diseased cells. All of these problems remain major obstacles to successful drug delivery with a minimum of deleterious side effects to the patient. This paper describes some of the many components involved in the design of a general platform technology for nanomedical systems. The feasibility of most of these components has been demonstrated by our group and others. But the integration of these interacting sub-components remains a challenge. We highlight four components of this process as examples. Each subcomponent has its own sublevels of complexity. But good nanomedical systems have to be designed/engineered as a full nanomedical system, recognizing the need for the other components

    State authenticity

    Get PDF
    State authenticity is the sense that one is currently in alignment with one’s true or real self. We discuss state authenticity as seen by independent raters, describe its phenomenology, outline its triggers, consider its well-being and behavioral implications, and sketch out a cross-disciplinary research agenda

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem
    • …
    corecore