35 research outputs found

    Unified dynamics of electrons and photons via Zitterbewegung and spin-orbit interaction

    Get PDF
    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, it experiences both a Zitterbewegung effect and a spin-orbit interaction leading to identical propagation dynamics for both particles. Applying a unified perturbative approach to both particles simultaneously, we find that to first order in perturbation theory, their Hamiltonians each contain identical Darwin (Zitterbewegung) and spin-orbit terms, resulting in the unification of their dynamics. The presence of the Zitterbewegung effect may be interpreted physically as the delocalization of the electron on the scale of its Compton wavelength, or the delocalization of the photon on the scale of its wavelength in the waveguide. The presence of the spin-orbit interaction leads to the prediction of several rotational effects: the spatial or time evolution of either particle\u27s spin or polarization vector is controlled by the sign of its orbital angular momentum quantum number or, conversely, its spatial wave function is controlled by its spin angular momentum

    Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light

    Get PDF
    Interaction of spin and intrinsic orbital angular momentum of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in a cylindrically-symmetric isotropic optical fiber. Such rotations occur in straight few-mode fiber when superpositions of two modes with parallel and anti-parallel orientation of spin and intrinsic orbital angular momentum (IOAM=22\hslash) are excited, resulting from a degeneracy splitting of the propagation constants of the modes.Comment: 6 pages, 5 figures, and a detailed supplement. Version 3 corrects a typo and adds the journal referenc

    Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light

    Get PDF
    The interaction of spin and intrinsic orbital angular momentum of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in a cylindrically symmetric isotropic optical fiber. Such rotations occur in a straight few-mode fiber when superpositions of two modes with parallel and antiparallel orientation of spin and intrinsic orbital angular momentum (IOAM=2ℏ) are excited, resulting from a degeneracy splitting of the propagation constants of the modes

    Ecological character displacement in the face of gene flow: Evidence from two species of nightingales

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (<it>Luscinia megarhynchos</it>) and the Thrush Nightingale (<it>L. luscinia</it>).</p> <p>Results</p> <p>We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry.</p> <p>Conclusions</p> <p>Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.</p

    Measurement and control of transverse photonic degrees of freedom via parity sorting and spin-orbit interaction

    Get PDF
    xv, 215 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.In this dissertation, several new methods for the measurement and control of transverse photonic degrees of freedom are developed. We demonstrate a mode sorter for two-dimensional (2-D) parity of transverse spatial states of light based on an out-of-plane Sagnac interferometer. The first experimental 2-D parity sorting measurements of Hermite-Gauss transverse spatial modes are presented. Due to the inherent phase stability of this type of interferometer, it provides a promising tool for the manipulation of higher order transverse spatial modes for the purposes of quantum information processing. We propose two such applications: the production of both spatial-mode entangled Bell states and heralded single photons, tailored to cover the entire Poincaré sphere of first-order transverse modes. In addition to the aforementioned transverse spatial manipulation based on free-space parity sorting, we introduce several more such techniques involving photons propagating in optical fibers. We show that when a photon propagates in a cylindrically symmetric waveguide, its spin angular momentum and its orbital angular momentum (OAM) interact. This spin-orbit interaction (SOI) leads to the prediction of several novel rotational effects: the spatial or time evolution of the photonic polarization vector is controlled by its OAM quantum number or, conversely, its spatial wave function is controlled by its spin. We demonstrate how these phenomena can be used to reversibly transfer entanglement between the spin and OAM degrees of freedom of two-particle states. In order to provide a deeper insight into the cause of the SOI for photons, we also investigate an analogous interaction for electrons in a cylindrical waveguide and find that each of the SOI effects mentioned above remain manifest for the electron case. We show that the SOI dynamics are quantitatively described by a single expression applying to both electrons and photons and explain their common origin in terms of a universal geometric phase associated with the interplay between either particle's spin and OAM. This implies that these SOI-based effects occur for any particle with spin and thereby exist independently of whether or not the particle has mass, charge, or magnetic moment.Committee in charge: Daniel Steck, Chairperson, Physics; Michael Raymer, Member, Physics; Jens Noeckel, Member, Physics; Steven van Enk, Member, Physics; Andrew Marcus, Outside Member, Chemistr

    Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration

    No full text
    Age-related macular degeneration (AMD) is the leading cause of blindness among older adults. It has been suggested that mitochondrial defects in the retinal pigment epithelium (RPE) underlies AMD pathology. To test this idea, we developed primary cultures of RPE to ask whether RPE from donors with AMD differ in their metabolic profile compared with healthy age-matched donors. Analysis of gene expression, protein content, and RPE function showed that these cultured cells replicated many of the cardinal features of RPE in vivo. Using the Seahorse Extracellular Flux Analyzer to measure bioenergetics, we observed RPE from donors with AMD exhibited reduced mitochondrial and glycolytic function compared with healthy donors. RPE from AMD donors were also more resistant to oxidative inactivation of these two energy-producing pathways and were less susceptible to oxidation-induced cell death compared with cells from healthy donors. Investigation of the potential mechanism responsible for differences in bioenergetics and resistance to oxidative stress showed RPE from AMD donors had increased PGC1α protein as well as differential expression of multiple genes in response to an oxidative challenge. Based on our data, we propose that cultured RPE from donors phenotyped for the presence or absence of AMD provides an excellent model system for studying “AMD in a dish”. Our results are consistent with the ideas that (i) a bioenergetics crisis in the RPE contributes to AMD pathology, and (ii) the diseased environment in vivo causes changes in the cellular profile that are retained in vitro
    corecore