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In this dissertation, several new methods for the measurement and control of

transverse photonic degrees of freedom are developed. We demonstrate a mode sorter for

two-dimensional (2-D) parity of transverse spatial states of light based on an out-of-plane

Sagnac interferometer. The first experimental 2-D parity sorting measurements of Rermite­

Gauss transverse spatial modes are presented. Due to the inherent phase stability of this

type of interferometer, it provides a promising tool for the manipulation of higher order

transverse spatial modes for the purposes of quantum information processing. We propose

two such applications: the production of both spatial-mode entangled Bell states and her­

alded single photons, tailored to cover the entire Poincare sphere of first-order transverse

modes.
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In addition to the aforementioned transverse spatial manipulation based on free-space

parity sorting, we introduce several more such techniques involving photons propagating

in optical fibers. We show that when a photon propagates in a cylindrically symmetric

waveguide, its spin angular momentum and its orbital angular momentum (OAM) interact.

This spin-orbit interaction (SOl) leads to the prediction of several novel rotational effects:

the spatial or time evolution of the photonic polarization vector is controlled by its OAM

quantum number or, conversely, its spatial wave function is controlled by its spin. We

demonstrate how these phenomena can be used to reversibly transfer entanglement between

the spin and OAM degrees of freedom of two-particle states.

In order to provide a deeper insight into the cause of the SOl for photons, we also

investigate an analogous interaction for electrons in a cylindrical waveguide and find that

each of the SOl effects mentioned above remain manifest for the electron case. We show

that the SOl dynamics are quantitatively described by a single expression applying to both

electrons and photons and explain their common origin in terms of a universal geometric

phase associated with the interplay between either particle's spin and OAM. This implies

that these SOl-based effects occur for any particle with spin and thereby exist independently

of whether or not the particle has mass, charge, or magnetic moment.
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CHAPTER I

INTRODUCTION

Photons have four degrees of freedom. In typical optics experiments involving parax­

ial laser beams, they may be described as follows: One spectral (energy) degree of freedom

(DOF), one polarization (spin) DOF, and two transverse spatial DOFs. Due to recent ad­

vances in the measurement and control of each of these DOFs, the study of quantum optics

has entered a truly exciting era. As far back as the 1930's it was understood that entangle­

ment, the quantum phenomenon which allows for two spatially separated objects to posses

more strongly correlated properties than similarly separated classical systems, lies at the

heart of what makes quantum theory so intuitively distinct from the notions of classical

physics [1]. Today, it is possible to generate and characterize quantum states of light con­

sisting of either heralded single photons or small numbers of photons with entangled field

modes. This has resulted in a series of impressive achievements, such as the practical pro­

duction and analysis of two-photon states exhibiting maximal entanglement in each photonic

degree of freedom, including spectral [2], polarization [3], and transverse spatial [4-9]. Si­

multaneous entanglement in all of these degrees of freedom has also been realized [10], as

well as multimode two-photon (Hong-Ou-Mandel) interference involving photonic transverse

spatial and polarization DOFs [11] and two-photon "ghost" imaging of the transverse DOFs

[12]. Various multi-photon entangled states have been generated [13-17], in addition to
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the engineering of pure two-photon product states which are completely unentangled in the

spectral degree of freedom, leading to spectrally pure heralded single-photon states [18, 19].

Most recently, the successful transfer of entanglement between DOFs has been realized, in­

cluding entanglement transfer from the polarization to the spectral DOF [20], and from the

polarization (spin angular momentum) to the spatial (orbital angular momentum) DOF [21].

At the heart of many of the aforementioned advances are several experimental tools which

have recently been developed for manipulating the transverse spatial degree of freedom of

light, including mode-sorting holograms (d. [4, 6]), astigmatic mode converters [22], one­

dimensional (I-D) parity sorters [8, 9, 23], and inhomogeneous anisotropic birefringent "q­

plates" [21, 24]. In this dissertation, we develop several new methods for the measurement

and control of transverse spatial photonic degrees of freedom. We demonstrate a mode sorter

for two-dimensional (2-D) parity of transverse spatial states of light based on an out-of-plane

Sagnac interferometer. The first experimental 2-D parity sorting measurements of Hermite­

Gauss transverse spatial modes are presented. Due to the inherent phase stability of this type

of interferometer, it provides a promising tool for the manipulation of higher-order transverse

spatial modes for the purposes of quantum information processing. We propose two such

applications: the production of both spatial-mode entangled Bell states and heralded single

photons, tailored to cover the entire Poincare sphere of first-order transverse modes [25].

In addition to the aforementioned transverse spatial manipulation based on free-space

parity sorting, we introduce several more such techniques involving photons propagating

in optical fibers. We show that when a photon propagates in a cylindrically symmetric
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waveguide, its spin angular momentum (SAM) and its orbital angular momentum (OAM)

interact. This spin-orbit interaction (Sal) leads to the prediction of several novel rotational

effects: the spatial or time evolution of the photonic polarization vector is controlled by its

OAM quantum number or, conversely, its spatial wave function is controlled by its spin. We

propose several experiments to characterize these phenomena, and demonstrate how they can

be used to reversibly transfer entanglement between the spin and OAM degrees of freedom of

two-particle states. In order to provide a deeper insight into the cause of the sal for photons,

we also investigate an analogous interaction for electrons in a cylindrical waveguide and find

that each of the sal effects mentioned above remain manifest for the electron case. We show

that the sal dynamics are quantitatively described by a single expression applying to both

electrons and photons, and explain their common origin in terms of a universal geometric

phase associated with the interplay between either particle's spin and OAM. This implies

that these Sal-based effects occur for any particle with spin, and thereby exist independently

of whether or not the particle has mass, charge, or magnetic moment.

The remaining chapters of this dissertation are outlined as follows: in Chapter II, we

consider the general case of a paraxial quantum particle (i.e., either an electron or a photon)

in a beam-like wave packet with well-defined values for both its intrinsic spin and orbital

angular momentum. When such a "spin-orbit" wave packet propagates in an inhomogeneous

medium with reasonably well-defined and cyclically varying linear momentum, we find that

in a single momentum cycle the particle's wave function accumulates an overall geometric

(Berry) phase of the form



<PH = - (A.O" + me) n,

4

(1.1)

where A. is the particle helicity magnitude (Le., the absolute value of the particle spin), 0"

and me are the respective SAM and OAM quantum numbers of the spin-orbit wave packet,

and n is the momentum-space solid angle subtended by the cyclical loop. This result plays a

central role in both the design of our 2-D parity sorting interferometer and to understanding

the physics of the spin-orbit interaction.

In Chapter III, we discuss in detail the properties of interferometric devices based on

the transverse mode parity of photons, by presenting a theoretical treatment of the 1-D

and 2-D spatial parity properties of paraxial Hermite-Gauss (HG) and Laguerre-Gauss (LG)

modes. We then use this theoretical description to describe a new type of interferometric 2-D

parity sorter, which has substantially superior stability properties as compared to previously

realized devices. Our improved mode sorter is an out-of-plane Sagnac interferometer whose

2-D sorting capabilities are based on a spatial rotation effect caused by the geometric phase

discussed in Chapter II, which is in turn induced by an out-of-plane mirror reflection. We

discuss this geometric phase, and explain how one may exploit it to realize a 2-D parity

operation on the transverse mode space.

In Chapter IV, we present experimental results demonstrating the measurement and

control of photonic transverse spatial modes, employing interferometers based on both 1-D

and 2-D parity as described in Chapter III. In the case of the interferometer based on 1-D

parity, we observed its predicted behavior as both a 1-D parity sorter and an HG-to-LG
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mode converter. In the case of the interferometer based on 2-D parity, we present the first

2-D parity measurements of Hermite-Gauss transverse spatial modes, and demonstrate the

stable sorting of these modes according to their 2-D parity. Additionally, we employ the 2-D

sorter to sort the output modes of a "three-mode" optical fiber, show how the 2-D sorter

can be made to work at nearly 100% efficiency, and perform a detailed loss and efficiency

analysis of the device. We also propose several applications of this interferometer, including

its use as an alternative to holograms in spatial mode filtering, the measurement of the

OAM of single photons, the production of Bell states entangled in first-order transverse

spatial modes, and the production of heralded single photons in first-order transverse spatial

states corresponding to an arbitrary point of the first-order spatial mode Poincare sphere.

In Chapter V, we provide the first unified treatment of the spin-orbit interaction for both

electrons and photons in the "wave function" picture, in which the full wave nature of each

particle is taken into account. We restrict our analysis to particle propagation in a straight

cylindrically symmetric waveguide, solving both the Dirac and Maxwell equations pertur­

batively for this geometry. Remarkably, we find in this case that the SOl is quantitatively

described by a single expression applying to either an electron or a photon, which predicts

that both particles pick up a phase <I> due to the SOl of the general form

(1.2)

where z is the longitudinal distance the particle has propagated down the waveguide. This

result leads to the prediction of several rotational effects for both particle types, in which the
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particle's spin and orbital degrees of freedom influence one another as it propagates down

the waveguide. We show that these rotational phenomena allow for the reversible transfer

of entanglement between the SAM and OAM degrees of freedom of two-particle states.

In Chapter VI, we focus on the special case of SOl in a waveguide with a step-profile for

the electronic potential or the photonic permittivity. Using (1.1), we show that in this case

the common origin of the SOl effects in electrons and photons is a universal geometric phase

associated with the interplay between either particles spin and OAM.
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CHAPTER II

ANGULAR MOMENTUM AND THE GEOMETRIC PHASE

Introduction

As discussed in Chapter I, the four physical degrees of freedom (DOFs) available to a

freely-propagating quantum particle with spin may be given a particularly simple interpre-

tation when the particle is constrained to a paraxial beam, such that the particle momentum

is directed predominantly along the propagation axis of the wave function. Specifically, for a

monoenergetic photon (or a monoenergetic, nonrelativistic electron) propagating paraxially

down the z axis, these DOFs may be associated with four quantum numbers representing

the following physical quantities: the energy w, the momentum z-component n(3, the spin

angular momentum (SAM) z-component n)..O", and the orbital angular momentum (OAM)

z-component nme. Here, the angular frequency wand propagation constant (3 may take con-

tinuous values, while the SAM 0" = ±1 and OAM me = 0, ±1, ±2, ... take on discrete values,

1
with)" being the magnitude of the particle helicity (i.e., the particle spin) such that).. = 2"

for electrons and ).. = 1 for photons.

For both particle types, the quantum numbers (w, (3,0", me) reflect the conserved quanti-

ties arising from the Poincare group symmetries present in their respective free-space Hamil-

tonians [26-28]. In this way, wand (3 together reflect the conservation of energy-momentum
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due to time translation symmetry and space translation symmetry with respect to the z

axis, respectively. Similarly, (J and m£ together reflect the conservation of the z-component

of total angular momentum-represented by the quantum number mj == ),,(J + m£-due to

spatial rotation symmetry about the z axis. The monoenergetic, paraxial wave function of

either particle is proportional to the traveling wave exponential phase factor eiC{3z-wt), which

contains the entirety of the dependence of the wave function on the variables z and t. As we

will show, if the beam-like wave function is expressed in cylindrical coordinates (p, ¢, z), the

SAM and OAM contributions to the wave function are proportional to an exponential phase

factor of the form eimj<P, which depends only upon the total angular momentum quantum

number mj.

Suppose now that an electron (photon) travels from free space into an inhomogeneous

potential (permittivity) that is slowly varying in space. Due to the nonzero potential (per­

mittivity) gradient, its momentum will then begin to change adiabatically as the particle

propagates, resulting in a curvilinear path (see Fig. 2.1). If we transform to the reference

frame of the particle, and continually rotate our spatial coordinate axes in time such that the

z-axis remains aligned with the adiabatically changing particle momentum, then the par­

ticle wave function remains proportional to the phase factor eimj<P x eiC{3z-wt). A question,

however, arises: how should the x and y axes be reoriented (about the z-axis) as the par­

ticle is transported along the continuously varying z direction in order to properly account

for the orientation of the particle's transverse wave function 'l/JT (p, ¢, z) ex eimj<P? This ques­

tion turns out to be more than merely academic, because the choice of how to "transport"
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Figure 2.1. Transport of the coordinate frame (x, y, z) attached to a particle propagating
along a curvilinear path where the z axis is fixed to the direction of the particle momentum
by construction. In the example shown, the particle path is a circular helix with constant
radius a and pitch hz, such that the helix's axis of symmetry is coaxial with the Z axis of
a (fixed) coordinate system (X, Y, Z), displayed in gray. The z axis (particle momentum
vector) therefore makes a constant angle e with the Z axis, a,nd lies instantaneously in the
X - Z plane at points A, B, and C, as shown. As the particle propagates from point A to

point B in time T, it accumulates a dynamical phase (3( - WT, where ( = j(27ra)2 + h~ is
the path length between A and B along the helix. Furthermore, at the same time the x - y
plane, which is always transverse to the particle motion, experiences a transverse rotation
through an angle 1> about the z axis as the particle propagates. This coordinate rotation
manifests itself as an additional geometric phase factor for particle wave functions with a
well-defined value of their total angular momentum mj. Unlike the dynamical phase, which
depends only upon the path length, this geometric phase depends on both the quantum
number mj a,nd the geometric characteristics of the path taken by the particle. See text for
further details.

the orientation of the x and y axes affects the value of the 1> coordiuate of '¢T (p, 1>, z), as

shown in Fig. 2.1.

Over a time interval T, the particle will propagate through some distance d along the

curvilinea,r path, corresponding to "optical" path length ( = l d

n (z) dz, where n (z) is

the refractive index as seen from the particle frame. As is well known, the traveling wave

phase factor ei
({3z-wt) gives rise to a dynamical phase accumulation over the time interval T
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equal to f3( - WT, which depends only on the optical path length ( and not upon any other

details of the particular history of the curvilinear path take by the particle. However, it is

perhaps surprising to note that the angular momentum phase factor eimjc/J also accumulates

an additional, distinct phase during the time T, the precise value of which depends upon the

total angular momentum quantum number mj and the history of the specific path taken by

the particle. This second mechanism of phase accumulation is an example of a phenomenon

known as the geometric phase, since it depends upon the geometric characteristics of the

particle's path.

The geometric (Berry) phase was discovered by Berry in 1984 in the context of gen­

eral quantum systems undergoing adiabatic changes in the parameters of their associated

Hamiltonians [29]. However, various manifestations of this phenomenon had been known

previously, including the Rytov polarization rotation [30] and the Pancharatnam phase [3l]

for photons, and the Aharonov-Bohm effect [32] for electrons. Shortly after Berry's impor­

tant work, it was shown that any unitary cyclic evolution in the (projective) Hilbert space

of a quantum system generates a geometric phase independently of any adiabaticity require­

ments on the Hamiltonian parameters as imposed by Berry [33]. Subsequently, even the

requirements that the evolution be unitary and cyclic were both relaxed [34].

In this chapter, we develop the aforementioned relationship between the angular momen­

tum of a quantum particle and the geometric phase, treating the electron and photon cases

simultaneously throughout. We begin by finding the appropriate description of a paraxial

quantum particle in a beam-like wave packet propagating in an inhomogeneous medium with
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reasonably well-defined and cyclically varying linear momentum, such that the wave packet

also has well-defined values for its intrinsic spin and orbital angular momentum. We then

develop the principal result of [33]-an explicit expression for the geometric phase for a gen­

eral quantum system-before adapting it in order to calculate the Berry phase accumulated

by our beam-like wave packet with SAM and OAM. We will make use of this important re­

sult throughout the remainder of this work, as it forms the basis for understanding both

the operation of our interferometric two-dimensional (2-D) parity sorter and the spin-orbit

interaction phenomenon.

Beam-like Wave Packet with Spin and Orbital Angular Momentum

Consider first a monoenergetic beam-like electron in free space, such that its wave func­

tion propagates in a well-defined direction with phase velocity ~. Taking the propagation

direction to be the z-direction, the electron wave function \]Iw assumes under these conditions

the traveling-wave form

\]Iw = \]I (p, cP, z) ei ({3z-wt) (2.1)

where we have used cylindrical coordinates (p, cP, z), and where fJ is known as the propagation

constant. Furthermore, without loss of generality we may assume that \]I (p, cP, z) - \]I (p, cP)

is independent of z, since the resulting non-diffracting beams (the so-called Bessel beams,

d. [35, 36]) form a complete basis set for an arbitrary diffracting wave \]I (p, cP, z).
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For a nonrelativistic electron in a state of the form (2.1), the appropriate wave equation

is the free-space Pauli equation [37], which may be written as a two-component Schrodinger-

type wave equation,

(2.2)

(2.3)

(

8".+ )such that eO" == is a normalized two-component spinor denoting the electron spin

8".-
state along the z-axis as determined by a = ± 1. The 8".+ and 8".- are Kronecker delta

functions, so that 8".+ = 1 for a = +1, and 8".+ = 0 for a = -1, etc.

In Appendix A, we derive the analogous wave equation for a monoenergetic beam-like

photon in free space, propagating along the z axis with phase velocity~. There we also show

that when the photon propagates paraxially, this general free-space photon wave equation

(A.2) reduces to a paraxial photon wave equation (A.23), which for practical purposes may be

expressed entirely in terms of the transverse electric field ET as a two-component Helmholtz

type wave equation,

(2.4)

with
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(2.5)

where in this case eo- == ~ (x + iay) is not a spinor but a two-component unit vector

denoting the circular polarization (helicity) state of the photon in the transverse plane with

respect to the z axis, as determined by a = ±1.

Comparing the above free-space equations (2.2)-(2.5) for nonrelativistic electrons and

paraxial photons, one can see that they have intriguingly analogous forms. This suggests

that we interpret the monoenergetic transverse electric field ET as a photon wave function

Ww such that ET ---7 ww , which may indeed be consistently done as we show in Appendix

A. In this way, the wave function dynamics of the electron and photon become completely

analogous, and we may write a single wave equation that applies to both particles,

(2.6)

where k 2 == 2n": nw for electrons and k 2 == w2EOfLo for photons. The solutions to (2.6), denoted

as wW ,6o-me' which are examples of non-diffracting Bessel beams [35, 36], have the general

form

(2.7)

where the radial wave function Jme (Kp) is a Bessel function of the first kind of order mi,

with K, == Jk2 - (32 being the transverse wave number. The states wW ,6<Tme are characterized

by the four quantum numbers w, (3, a, mi as defined above, and therefore have well-defined
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values for both their SAM and DAM. We note here that while only paraxial photons can

be described by the wave functions (2.7), even non-paraxial electrons may take that form.

However, in this Dissertation we are concerned primarily with analogies between electrons

and photons in which their wave functions have similar properties, so that we henceforth

assume that both electrons and photons are propagating paraxially with momentum directed

primarily along the z axis.

Our stated task is to construct a traveling wave packet from the fundamental Bessel

beam solutions (2.7). In view of this, we consider the integral representation of the Bessel

(2.8a)

(2.8b)

where the substitution a --t ¢/ - ¢ - i has been made in (2.8b). Therefore, by (2.7) and

(2.8b), the state ww{3 uml may be written as

(2.9a)

(2.9b)

where
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(2. lOa)

= k sin 0'r sin 0 (cos ¢' cos ¢ + sin ¢' sin ¢) + k cos 0'r cos 0' ,

= ""pcos (¢' - ¢) + (3z,

(2.10b)

(2.10c)

has been used in (2.9b), along with the indentity cos ¢' cos ¢ + sin ¢' sin ¢ = cos (¢' - ¢) and

the relations k sin 0' == "", k cos 0' == (3, rsinO == p, and rcosO == z. Also in (2.9) and (2.10),

spherical coordinates r (r, 0, ¢) and k (k, 0', ¢') have been employed, and IV == (_i)m
l

N.
27r

It is explicitly apparent from (2.9) that the Bessel beams w w ,13".me are simply a linear

superposition of plane waves oriented at a fixed polar angle 0' with respect to the z axis, but

with all possible values of ¢' included, weighted by the m¢'-dependent phase factor eiml¢/.

Therefore, to construct a monoenergetic paraxial wave packet from the states ww,13".ml that

retains its non-diffracting character, we may compose a superposition state Wk 00'" ml in the

0' polar momentum angle such that the weight function Woo (0') is sharply peaked about

some value 00 « 1,

WkOo".ml == JWoo (0') w w ,13".me sin 0'dO',

= IVJWoo (0') [Jml (""p) eime<Pei,13z-wt] sinO'dO'e".,

= eiml<Pe". [IVJWoo (0') Jml (kpsin 0') eik(zcoso'-ct) sin 0'dO'] .

(2.lla)

(2.11b)

(2.llc)
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where (2.7) has been used in (2.11b), while K = ksinO', j3 = k cos 0', and w = kc have been

used in (2.11c).

By inspection of (2.11c), we see that the term in square brackets is independent of the

SAM and GAM quantum numbers (7 and me, so that these paraxial, monoenergetic, "polar-

angle" wave packets retain well-defined values for (7 and me. This is why we have included

(7 and me as subscripts in the wave packet function WkOoamr Although w remains a good

quantum number for the wave packet, we have replaced it with the equivalent quantum

number k = ~ since explicit appearances of k are dominant in (2.11b). In making the above
c

angular superposition, however, we have lost j3 = k cos 0' as a good quantum number, and

we instead have included the subscript 0o, which acts to characterize the angular distribution

of the wave packet.

Since SAM and GAM terms eimi<Pea not only factor out of the 0' integrand, but are

also independent of k, we may construct a superposition of the wave packets WkOoami with

different k values which retain well-defined values of (7 and me. We therefore compose such a

superposition in k such that the weight function W ko (k) is sharply peaked about some value

WkoOoami =JWko (k) WkOoamik2dk, (2.12a)

= JWko (k) JWoo (0') Jeimi<P' x eik(O',<p').r-wtd</>' sinO'dO'k2dkea, (2.12b)

= eimi<PeaJWko (k) JWoo (0') Jmi (kpsinO') eik(cosO'z.r-ct) sinO'dO'k2dk, (2.12c)
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(2.12f)

(2.12e)

(2.12d)

In (2.12b), we have for completeness written out the full expansion of WkoOoamt in terms

of plane waves eik(O',</>').r-wt, while in (2.12c) we have performed the q/ integration using

k(()',q/) . r = ksin()'pcosq/ - cjJ + k cos ()'z, w = kc, and (2.8b). In (2.12d) we have used

the paraxial approximation ()o « 1 to write k cos ()' ~ k, let k == ko+ 8k, and factored the

constant term eiko(z.r-ct) out of the ()' and k integrands.

The construction of the desired states WkoOoamt == l'l,b (k)) is now complete. These wave

packets are polyenergetic paraxial beams, constructed such that their momentum distribu-

tion is characterized by sharp peaks about the central wave number ko and the central spher-

ical polar angle ()o « 1 in k-space, which enforces the paraxial condition. And, most impor-

tantly for our purposes, they carry well-defined values of SAM and GAM, have a well defined

propagation direction as determined by the central momentum vector kc = kocos ()oz ;:::: koz,

and describe physical wave functions associated with both electrons and photons. Due to

their SAM and GAM, we will henceforth call such states spin-orbit wave packets.
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Spin-Orbit Wave Packet in a Weakly Inhomogeneous Medium

The spin-orbit wave packets l'tP (ke )) defined in (2.12f) are freely propagating, so that their

central wave vector ke is constant and points in the z direction. Furthermore, recall that

the magnitude of a free-space wave vector k is given under (2.6) via the relation k2 == ~": Eo

for electrons and k 2 == W
2

/-l0EO for photons, where Eo = l'iJJJ has been used. For a particle

traveling in a homogeneous medium (i.e., a homogeneous potential energy U for electrons or

a medium with homogeneous permitivity E for photons), these relations must be modified by

substituting Eo ---+ E = Eo (1 - i~)for electrons and EO ---+ E = EO (1 + ~:) for photons,

where Ue- = -eV is the electron's difference in potential energy from the zero point, while

U'Y = E-EO is the photon's difference in permitivity from the vacuum value. For both particles,

these substitutions result in the modification of the wave number k by k ---+ kn, where n

is the refractive index for the particle wave function such that n == (E = J1 - Ue
- forVE;; Eo

electrons and n == fI = J1 + U'Y for photons. Therefore, one may construct wave packetsV~ EO

of the form l'tP (ke )) which propagate in a homogeneous media, provided the substitution

k ---+ kn is made in (2.12), such that the central wave number in particular is modified by

ko ---+ kon.

Although the wave number of a quantum particle propagating in a homogeneous medium

is modified from the free-space wave number as discussed above, the direction of the wave

vector remains constant in both the free space and homogeneous cases. Since we are inter-

ested in the case in which an electron or photon wave packet propagates along a curvilinear
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path S such that the direction of the wave vector will vary, we must consider an inhomo-

geneous medium characterized by a spatially dependent refractive index n (r) which varies

slowly compared to an optical wavelength>' = 27f. In such a medium, the central wave
ko

vector of the wave packet I~ (kc )) becomes spatially dependent, assuming the general form

kc -----* kon (rc ) u(rc ), such that both the wave vector magnitude kon (rc ) and direction u(rc )

depend upon the location r c of the wave packet center in the medium. Furthermore, let-

ting 8 parameterize the curve S such that r c -----* r c (8), we note that the unit wave vector

u(rc (8)) is also the unit tangent vector to the curve S. Therefore, treating the particle as a

ray with position r c (8) and tangent vector u(rc (8)), which experiences the local refractive

index n (rc (8)) as it propagates along the curve S, allows us to invoke the ray equation [39],

(2.13)

where 88 == u(rc (5)) . \7 is the directional derivative along the curve.

For concreteness, we consider first the simple case of a cylindrically symmetric medium

coaxial with the z axis with a weakly varying parabolic refractive index of the cylindri-

cally symmetric form n (rc (8)) = n (Pc (8)) = n (0) vil - ~p~ (8), with ~ « 1, such that

n (Pc (z)) ~ n (0) (1 - ~~p~ (Z)). Furthermore, to simplify the analysis we further assume

that the trajectory r c (5) remains approximately parallel with the z axis for all 5, so that

8 ~ z and u(rc (8)) ~ z, which implies 8s ~ 8z . Under this paraxial trajectory approxima-

tion, (2.13) therefore reduces to the paraxial ray equation,
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(2.14a)

(2.14b)

(2.14c)

(2.15)

where we have replaced n (rc (z)) -+ n (Pc (z)) in (2.14b), and where rTc (z) == Xc (z) X +

Yc (z) Yis the transverse part of the ray position vector r c (z) in (2.14c). Also in (2.14c),

\7n (Pc (z) ) (1 ) ~
we have used \7 In n (Pc (z)) = n (Pc (z)) ~ \7 1 - 2"~P~ (z) = - 2" \7 (x~ (z) + Y~ (z)) =

-~rTc (z).

The general solutions to (2.14c) are

(
xocos (~z) + JKsin (~z) )

rTc (z) = ~

Yo cos (~z) + JK sin (~z)

where Xo and Yo are the initial x and ycoordinates of the ray kc, and exo and eyO are its initial

angle in the x-z and y-z planes, respectively. The curves traced out by the trajectories rTc

are in general elliptical helices. However, for Xo = 0, eyO = 0, and exo = Yo~, rTc assumes

the simpler form

rTc (z) = ( Yo sin (~z) )

Yo cos (~z)

so that the trajectories become circular helices with pitch ~ and radius Yo.

(2.16)
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Figure 2.2. Projections of helical trajectories of rays in a gradient index medium with a
weakly parabolic index profile with 6 = 0.05. The rays are propagating paraxially with
respect to the z direction, and their paths are projected into the x-y plane. For purposes
of illustration, 97% of a single full helical cycle is shown. The initial condition Xo = 0
holds for all plots. See text for further discussion. (a) Elliptical helical rays with slightly
different initial angular coordinates: Bxo = ByO = Y06 (red), Bxo = Byo = 1.05Y06 (green),
and exo = eyO = 0.95Y06 (blue). (b) Elliptical helical rays with different initial transverse
coordinates: Yo (red), 1.05yo (green), and O.95yo (blue). (c) Circular helical rays (xo = 0,
eyO = 0, and exo = YoV6.) with slightly different initial angular coordinates: exo = y06 (red),
exo = 1.05:1/06 (green), and Bxo = 0.95Y06 (blue). (d) Circul(\,[ helical rays (xo = 0, ByO = 0)
with different initial transverse coordinates: Yo (red), 1.05yo (green), and 0.95yo (blue).
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Projections of the helical trajectories of various rays onto the x-y plane are plotted in

Fig. 2.2. In Fig. 2.2(a), the solutions (2.15) are plotted for slightly different initial angular

coordinates Oxo and 0yO' while in Fig. 2.2(b) they are plotted for slightly different initial

transverse coordinates Yo (due to the cylindrical symmetry of the problem, we set Xo = 0

throughout without loss of generality.) Similarly, in Fig. 2.2(c), the solutions (2.16) are

plotted for slightly different initial angular coordinates, while in Fig. 2.2(d) they are plotted

for slightly different initial transverse coordinates. In each plot, 97% of a single full helical

cycle is shown for purposes of illustration. Comparing now (2.15) and (2.16) with Fig. 2.2,

we may see that each individual ray is cyclic-that is, each ray follows a repreated periodic

path. Specifically, if the rays start out at the same position but at different angles, they will

take slightly difference paths, but will all return to the same position after each cycle (see

Fig. 2.2(a),(c)). Similarly, if the rays start out with different transverse positions but are

at the same initial angle, they will again take seperate paths, but their separation distance

will not be distorted at the completion of each cycle (see Fig. 2.2(b),(d)).

From the above analysis we may make two important conclusions: First, in a weakly

varying parabolic medium such that ~ is sufficiently small, a paraxial beam of rays neither

diverges nor is distorted. Also, since the optical path lengths of the different rays of Fig. 2.2

are approximately equal, each paraxial ray will accumulate approximately the same phase,

at least for a reasonably small number of cycles. It follows from these that a paraxial spin­

orbit wave packet I'I/J (kc)) , which decomposes into plane waves according to (2.12), retains

its approximate form when propagating in such a parabolic medium with ~ « 1, with
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its central momentum wave vector kc following the central trajectories given in red in Fig.

2.2 (the other contributing wave vectors follow nearby trajectories in Fig. 2.2 such as the

outlying blue and green ones). Furthermore, from this example it is clear that in any medium

with a sufficiently weakly varying refractive index profile n (r) = n (0) VI - ~X (r) such that

~ « 1 and X (r) arbitrary, !1,b (kc)) will approximately retain its form, provided that the

central wave vector kc undergoes cyclic variations as in the example above.

From the above arguments, we conclude that if the central wave vector kc of the spin­

orbit wave packet 11,b (kc)) traverses a single cycle of a cyclic path in some time interval T,

then the wave packet evolves back into the same state, up to an overall phase:

11,b (kc (T))) = ei~ 11,b (kc (0))). (2.17)

What is this overall phase? One component of it is the dynamical phase <PD, which is given

by the line integral of the wave number along the path S with parameter s:

<PD= jkc.U(S)dS= jkon(S)dS, (2.18)

where kc = kon (s) U (s) has been used. We focus now on the simple case of the red circular

helical trajectory in Figs. 2.2(c),(d), of which a rendering ofthe three-dimensional trajectory

has already been given in Fig. 2.1. In this special case, the refractive index is constant for

a trajectory of constant radius Yo due to the cylindrical symmetry of the medium, so that

(2.19)
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is the dynamical phase accumulated by the spin-orbit wave packet, where 21rVY5 + ~ is the

helical path length for a single helical cycle. As we have already discussed, however, there is

in general another geometrical contribution to the phase factor ei<l> in (2.17), which depends

not simply on the total optical path length, but on the geometry of the path S. It is to this

geometric phase that we now turn.

Geometric Phase of a General Quantum System

Consider a normalized quantum state 11/1 (t)) in a Hilbert space 7-{, which evolves according

to the Schrodinger equation

il (t) 11/1 (t)) = in8t 11/1 (t)) , (2.20)

such that the original state 11/1 (0)) at time t = 0 evolves back into itself-up to a unitary

phase factor ei<l>-at some later time T:

(2.21)

Although the states 11/1 (0)) and 11/1 (T)) are distinct vector in the Hilbert space 7-{, one may

define a "projective" Hilbert space P where these states (and all other states related by a

complex phase factor such as ei<I» are identified as the same element of that space. Formally,

given some vector eiiI> 11/1') in 7-{, let the set {11/1')} be defined as the set of all vectors I~) in 7-{

such that I~) = eiiI> 11/1'). Then the projective Hilbert space P is defined as the vector space
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whose elements consist of all possible sets of the form {I'I/")} that may be constructed from

vectors in 'H. using this language, we may say that the condition (2.21) means that 1'1/' (t))

has traversed a closed loop (Le., a cyclic evolution) in the projective Hilbert space P.

Note that we may carry out a unitary transformation on the state 1'1/' (t)) without affecting

the value of the observable ('I/' (t)1 iI 1'1/' (t)). With this in mind, we now carry out a unitary

(gauge) transformation upon \'1/' (t)),

I~ (t)) =(; (t) 1'1/' (t)) = e-i<I>(t) 1'1/' (t)) ,

such that ~ (r) - ~ (0) = 11>. The transformed state I~ (t)) then satisfies

I~ (r)) = I~ (0)),

(2.22)

(2.23)

which is not true for 1'1/' (t)), see (2.21). We are interested in the evolution of I~ (t)) with

respect to the time translation operator iOt, which by the chain rule may be expressed as:

where the square brackets emphasize that the derivative is acting only on the phase factor

e-i<I>(t) in (2.24), and not the state l'lf' (t)). "Dotting" both sides of (2.24) by the bra ('~ (t) 1

and integrating from time zero to time r then gives



iT ('0 (t) liat l'0 (t)) dt = iT (1/J (t)1 [eieI>(tJi8te-ieI>(tJ] 11/J (t)) dt

+ iT (1/J (t)1 ei<l!(tJe-ieI>(tJi8t 11/J (t)) dt,

= iT [ei<l!(tJi8te-i<l!(tJ] dt

lr+ h .10 (1/J (t) Iif (t) /1/J (t)) dt,

r 1 r
= .10 at <I> (t) dt + h .10 (1/J (t) Iif (t) 11/J (t)) dt,
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(2.25a)

(2.25b)

(2.25c)

(2.25d)

where (2.20) has been used in (2.25b). In (2.25d), <I> == <I> (T) - <I> (0) is the total phase

accumulated over time T as defined in (2.21) and below (2.22), and

1 r
<I>D == hJ

o
(1/J (t)1 if (t) 11/J (t)) dt, (2.26)

E A

which simplifies to <I>D = ht in the case where 11/J (t)) is an eigenstate of H (t), is the so-called

dynamical part of the phase accumulated over time T.

From (2.25d), we therefore see that the total phase <I> is made up of two contributions: a

dynamical phase contribution <I>D and the Berry phase contribution

so that
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(2.28)

(2.30)

Equation (2.27) is the general expression for the Berry phase derived in [33].

However, hereafter we will make exclusive use of a simplified form of this expression: we

substitute 1> (t) == 1>B (t) - 1>D (t) into the right hand side of (2.25b), and use the definitions

(2.27) and (2.26) in order to write the Berry phase as

<PB =1T

[eih (t)i8te-i<I>B(t)] dt +1T

[e- i<I>D(t)i8te
i<I>D(t)] dt + <PD, (2.29)

where the chain rule iBte-i(ii>B(tl-ii>D(t)) = eiii>D(tliBte-ih(t) + e-iii>B(t)iBteiii>D(tl has been used.

Carrying out the differentiation of the second term yields the expression e-i ii>D(t)iBt e+i 4>D(t) =

_e-i<I>D(t)eih (t)8t 1>D (t) = -8t 1>D (t), so that upon performing the subsequent integration

we have, -1T

8t 1>D (t) dt = - 1>D (01: = - (1)D (r) - 1>D (0)) = -<PD which gives rise to

the cancellation of the <PD term in (2.29). This results in the following expression for the

Berry phase:

<PB = 1T

[eih(t)i8te-ih(t)] dt.

We note that this expression may seem trivial, since performing the differentiation

i8te-i ii>B(t) = 8t 1>B (t), canceling the complex exponential factors, and integrating the re­

sulting integrand 8t 1>B (t) yields the trivial relation 1>B (t) = 1>B (t). However, as we will see,

the right hand side of (2.30) has a geometrical interpretation which will allow its straight-

forward use in calculating the Berry phase <PB.
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Geometric Phase of a Spin-Orbit Wave Packet

In order to adapt the general expression (2.30) to calculate the Berry phase accumulated

by a spin-orbit wave packet of the form 1'ifJ (ke»propagating in an weakly inhomogeneous

medium, we note that (2.17) has the same form as the general equation (2.21):

1'ifJ (7») = ei<I> 1'ifJ (0») ,

{::> 1'ifJ (ke (7») = ei<I> 1'ifJ (ke (0») ,

{::> 1'ifJ (kf») = ei<I> 1'ifJ (ki ») ,

(2.31a)

(2.31b)

(2.31c)

Since the time dependence of the state is completely contained within the wave vector ke (t)

in this case, the time dependence of the momentum has been dropped in (2.31c), where the

initial momentum k i and final momenta k f are equal by construction (in what follows we

also temporarily drop the subscript c to simplify the notation). As before in (2.21), the

constraint (2.31c) implies that 1'ifJ (ki ») has undergone a cyclic evolution in the projective

Hilbert space.

After carrying out a gauge transformation on 1'ifJ (k») analogously to (2.22),

I~ (k») == U(k) 1'ifJ (k») = e-i~(k) 1'ifJ (k») , (2.32)

we are prepared to consider-analogously to (2.24)-the evolution of I~ (k») with respect

to the momentum-space translation operator ~ (which is, of course, the position operator



,--------- - ---------
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f) . Note however that equations (2.23)-(2.30) follow directly from the assumption (2.21)

and the definition (2.22), if the Schrodinger equation (2.20) is also used. Therefore, since

(2.31) and (2.32) are the direct momentum-space analogues to (2.21) and (2.22), and the

definition of the position operator in momentum space f 1'1/' (k)) = -i~ 1'1/' (k)) acts as a

direct analogy to the Schrodinger equation (2.20), we conclude that an analogous version of

(2.30) applies to the present case of momentum space with t ---t k, so that at ---t ~, dt ---t dk,

t = 0 ---t k = ki , and t = T ---t k = k f:

(2.33)

Furthermore, we again have the general relationship

where the dynamical phase <I>D now takes the form

rkt

<I>D = - Jk; ('I/'(k)lfl'l/'(k)) ·dk,

(2.34)

(2.35)

analogously to (2.26). For a wave packet with a sufficiently well-defined position r =

('I/' (k)\ f \'1/' (k)), such that the refractive index of the medium does not vary appreciably

over the length scale associated with the wave packet, we may express (2.35) as



,---- ------_._~ -----

l
k !

<PD=- r·dk,
ki

I

k ! rr!

= - r· k + Jr k· dr,
ki r1.

l
S!

= Si kon(s)ds.
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(2.36a)

(2.36b)

(2.36c)

Here, integration by parts has been used in (2.36b) with the "boundary term" r· k being

zero since the line integral is over a closed path C in momentum space (~ = k f ). In (2.36c),

k = kon(r(s))u(r(s)) = kon(s)u(s) and dr = u(r(s))ds = u(s)ds have been used,

where s parameterizes the particle trajectory S as in (2.13). Note that equation (2.36) for

the dynamical phase <PD gives the same form as (2.18), as is to be expected.

Armed with (2.33), we are now in a position to calculate the Berry phase accumulated by

the spin-orbit wave packet 11/J (kc)) ex: eimt</Jecr (see equation (2.12e)). As already discussed in

and around Fig. 2.1, as the wave packet propagates between two points along a curvilinear

trajectory S such that its initial and final wave vectors k i and k f are collinear, the plane

transverse to the particle motion (the x-y plane in Fig. 2.1) may experience a rotation

about the propagation (z) axis through an angle ¢> (kc) which depends upon the geometry

of the curve S via the wave vector kc ' This rotation manifests itself in two ways: the

cylindrical ¢> coordinate effectively undergoes the transformation ¢> -t ¢> - ¢> (kc ), and the

spin (polarization) state of the electron (photon) undergoes a rotation through the same

angle ¢> (kc), where the rotation angle ¢> (kJ depends upon the geometry of the curve S via

the wave vector kc '
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As a result of this ¢ coordinate rotation, the GAM term eimt</J in I¢ (kc)) undergoes the

transformation

(2.37)

so that the geometric phase accumulated from the GAM term is proportional to the GAM

quantum number me for both electrons and photons. In contrast, the SAM term ea trans-

forms differently for the two particle types: for electrons, ea is a two component spinor which

in the Sz basis take the form

(2.38)

so that the proper matrix representation for a rotation Rz (¢ (kc )) through a angle ¢ (kc )

about the z axis is the so-called D! representation [40],
2

D~ [Rz(¢(kc))]ea = [ICOS¢~C) -i(a'Z)Sin¢~C)]ea,

(

COS ¢ (kc ) _ i sin ¢ (kc )

2 2

o

(2.39a)

(2.39b)

(2.39c)
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(2.39d)

1
where A = 2 is the magnitude of the electron helicity. For photons, however, eO" is a two

component polarization vector in the transverse (x-y) plane which in the linearly polarized

basis takes the form

h 1(h . h) (1)
eO" = J2 x + zuy = io- ' (2.40)

so that the proper matrix representation for the rotation Rz (¢ (kc)) is the D1 (faithful)

representation for three-dimensional vectors,

(2.41)

where A = 1 is now the magnitude of the photon helicity. From (2.37), (2.39d), and (2.41),

we may thereby express in a single equation the effects of the transverse rotation Hz (¢ (kc))

on the spin-orbit wave packet I'l/J (kc)) for both particles:

(2.42)

From (2.42), we see that this momentum-dependent transverse rotation acts on the state

I'l/J (kc)) as a momentum-dependent unitary transformation of the general form (2.32), with

~ (k) = (AU + me) ¢ (kc). As discussed earlier, it follows from this that the particle a.ccumu-

lates a geometric phase <PB which is given by (2.33):



<I>B = rkf
[e-i(>.a+mt)¢(kc)i8t.:cei(>.o+mt)¢(kc)] • dk.

Jk;
This expression may be simplified by taking the derivative of the exponential,

so that substitution of (2.44) into (2.43) yields

33

(2.43)

(2.44)

(2.45)

In Appendix B, following the work of Bialynicki-Birula and Bialynicka-Birula [28] and

Bliokh and Freilikher [41], we show for both electrons and photons that the quantity

[e-i¢(kc)i8t.:cei¢(kc)] == A (ke ) is a three-dimensional momentum-dependent vector with curl

(2.46)

where momentum-space spherical coordinates are being used, with ke being the radial co­

ordinate and ke == I~:I being the radial unit vector. This result allows us to use Stokes'

theorem in order to convert the line integral in (2.45) about the closed momentum-space

curve C into a surface integral over a surface spanning C,

(2.47)
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where dA = dAn, with n being a unit vector normal to the differential momentum-space

surface area element dA. Substituting (2.46) into (2.47), we see that (2.45) may be expressed

as

<I>B = - (AO" + mt)L~i .dA,

= - (AO" + mt)L~ .k~dnn,
= -(AO"+mt) Ldo',

= - (AO" + mt) 0"

(2.48a)

(2.48b)

(2.48c)

(2.48d)

where ke = nand dA = k~dn have been used in (2.48b), with dO. being the differential

momentum-space element of solid angle. In (2.48c) we see that all factors of the momentum-

space radial coordinate ke cancel and that the dot product is trivial, so that the integral

reduces to LdO. = 0" which is the total solid angle subtended by the momentum-space

curve C as seen from the origin.

This important result states in words that a spin-orbit wave packet of the form 11,b (ke))

with SAM 0" and OAM mt as given in (2.12) will accumulate a geometric phase of the form

<I>B = - (AO" + mt) 0, upon propagating around a single closed loop in momentum space,

where A is the particle helicity magnitude and 0, is the solid angle subtended by the loop.

For a simple example, consider the case where the particle's curvilinear trajectory S marks

out a circular helix as shown in Fig. 2.3(a), such that the momentum-space curve C becomes

a circle on the Poincare (unit) sphere, as shown in Fig. 2.3(b). In this case (which was also
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Figure 2.3. (a) Helical particle trajectory S with constant radius a, helixt pitch hz, and
pitch angle e. (b) The helical path S corresponds to a circular curve C traced out by the

unit momentum vector kc in momentum space, which subtends solid angle D = 41T sin2 ~ as

seen from the origin. This solid angle is proportional to the accumulated geometric phase.

e
considered in Fig. 2.1), the solid angle D is given by the simple formula D = 41T sin2 "2 so

that the accumulated geometric phase is

(2.49)

where e is the angle that the particle's central wave vector kc makes with the rotation axis

of the helix (i.e., the helix pitch angle, see Figs. 2.1 and 2.3).

The OAM-dependence of the result (2.48d) was first presented in the context of spin-

orbit wave packets by Bliokh [41-44], while its SAlVI-dependence was first discussed in a

unified manner for both particles by Bialynicki-Birula and Bialynicka-Birula in the context

of Poincare group transformations of plane waves [28]. As we will see in subsequent chapters,
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(2.48d) plays a central role in both the design of our 2-D parity sorting interferometer and

in understanding the physics of the spin-orbit interaction.
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CHAPTER III

TRANSVERSE SPATIAL PARITY SORTING OF PHOTONS

Introduction

In recent years, several studies have focused on the problem of sorting higher-order pho­

tonic transverse spatial modes by their spatial symmetry properties. In particular, several

different interferometers of the Mach-Zehnder type have been proposed and employed to

this end. For Laguerre-Gauss (LG) modes, an orbital angular momentum (OAM) sorter

was demonstrated at the single-photon level which sorted modes with even OAM values,

which exited one port of the interferometer, from those with odd OAM values, which ex­

ited the other port [45, 46]. For the Hermite-Gauss (HG) modes, a mode index sorter was

theoretically proposed to measure the value of a single HG index n or m [47], while a dif­

ferent setup experimentally distinguished the HGw and HGOI modes, thereby acting as a

transverse-mode beam splitter for first-order HG modes, in analogy with a polarizing beam

splitter [23]. A similar setup was later used to perform various spatial parity manipulations

on photonic qubits [8].

In this chapter, we discuss in detail the properties of the two aforementioned sorters which

have been experimentally implemented (see [23] and [46]), and build off of this groundwork

by describing a new type of interferometric two-dimensional (2-D) parity sorter, which has
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substantially superior stability properties as compared to those of the Mach-Zehnder type.

The interferometers first demonstrated in [23J and [46J perform physically distinct parity

operations on the transverse mode space; the scheme in [23] is based upon a one-dimensional

(l-D) parity operation, while that of [45J is based on 2-D parity. This distinction seems to

have been overlooked in the context of mode sorting prior to our recent work [48], so that

the difference between the two sorters had not been previously emphasized.

In order to properly describe these devices, we begin the chapter by presenting a theoreti­

cal treatment of the l-D and 2-D spatial parity properties of paraxial HG and LG modes, and

subsequently apply this framework to explain the operation of the l-D and 2-D sorters. We

then describe our improved mode sorter, an out-of-plane Sagnac interferometer whose 2-D

sorting capabilities are based on a spatial rotation effect caused by a geometric phase, which

is in turn induced by an out-of-plane mirror reflection. We discuss this geometric phase,

and explain how one may exploit it to realize a 2-D parity operation on the transverse mode

space.

The Paraxial Description of the Electromagnetic Field

In typical optical experiments, the electromagnetic radiation emitted from lasers is con­

fined to a beam-like geometry. Furthermore, in free space the electric and magnetic fields

are not independent, so that the one such field may be calculated once the other is known.

Therefore, since the response of most laboratory photo detectors depends negligibly on the

magnetic field, in what follows we will focus entirely on the electric field. These considera-
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tions motivate the use of a beam-like description of the electric field known as the paraxial

approximation.

In free space, the electric field E (r, t) is a solution of the vector wave equation,

2 ( 1 2 (\7 E r,t) - 2"8t E r,t) = O.
c

(3.1)

Here, r = xx+ yy + zz is the Cartesian position vector, and the notation 8 denotes a partial

derivative with respect to the coordinate in the subscript position, such that 8; denotes

a second partial derivative with respect to t. In order to model beam-like radiation, we

choose the z-axis as the beam propagation direction, and we express E (r, t) as a product of

a transverse field distribution £.T (rT, z) and a longitudinal field distribution £.L (z, t):

E (r, t) = £.T (rT, z) x £.L (z, t) e. (3.2)

In (3.2), rT = xx + yy denotes the Cartesian position vector in the plane transverse to the

propagation direction, while e denotes a constant unit vector. The longitudinal function

£.L (z, t) may generally be expressed in the form of a wave packet,

£.L (z, t) = J£. ((3) e i ({3z-wt)d(3,

= J£. ((3) e i [({3-kc)z-(w-wc)t]d(3 x ei(kcz-wct),

== F (z, t) x ei(kcz-wct),

(3.3a)

(3.3b)

(3.3c)
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where (3 denotes the z-component of the wave vector, which is also known as the propa-

gation constant for beam-like geometries, and W denotes angular frequency. In (3.3b), the

central monochromatic contribution to the wave packet (known as the carrier wave) has

been factored out of the integral, so that ke and We are the carrier wave propagation con-

stant and angular frequency, respectively. In (3.3c), F (z, t) is known as the longitudinal

envelope function.

We now likewise split the Laplacian into its respective transverse and longitudinal parts,

such that \72 = \7~ +8;. Substituting this expression along with (3.2) and (3.3c) into (3.1)

leads to the following (exact) equation,

[\7~+ (2ike8z+2i~;8t)+(8;- :28;) - (k~- ~;)] t'T(rT,z)F(z,t) =0, (3.4a)

=} [\7~+2ike (8z +~8t) +(8; - :28;)] t'T (rT' z) F (z, t) = 0, (3.4b)

where the free-space condition We = kec has been used in (3.4b). The paraxial approximation

can be made from (3.4) by assuming that the transverse field ET (rT, z) is sufficiently slowly

varying with respect to z such that its second derivative is small compared to its first

derivative:

(3.5)

Under this assumption, the term 8;t'T (rT' z) in (3.4b) be may neglected, so that (3.4b) may

be readily expressed in terms of separate longitudinal and transverse equations,



[2ikc (Oz + ~Ot) + (0; - :20;)] F (Z, t) = 0,

(V'~ + 2ikcoz) £T (rT' z) = 0,
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(3.6a)

(3.6b)

In what follows we will be interested only in the paraxial transverse field, so we will henceforth

focus on (3.6b), which is known as the paraxial wave equation.

In Cartesian coordinates (x, y, z), the general solutions to (3.6b) are known as the

Hermite-Gaussian (HGnm ) modes and take the form [49]

2-(n+m-l) M2
where Anm = 1 1 is a normalization constant, W (z) = Wo 1 + 2" parameterizes

nn.m. Zo

the beam width, Hq(u) = (-l)q eu2 d~q (e-u2
) denotes a qth-order Hermite polynomial,

R (z) = Z (1 + :~) characterizes the phase curvature, Zo = ;cw~ is the Raleigh range, and

Wo is the minimum beam width, or beam waist. Also in (3.7), n and m are nonnegative

integers which provide a distinct label for orthogonal transverse modes. In cylindrical coor-

dinates (p, 1>, z), the solutions to (3.6b) are known as the Laguerre-Gaussian (LG~) modes,

AI£I ( P )1£1 (2p2 ) _-1'2 _i[£4>_(2PH+l)tan-l(L)+kcp2]
C ( A.. ) - P LI£I W2W Zo 2R(z)
6T p,'P,Z - W(Z) W(Z) P W2(Z) e e , (3.8)

where AI£I =
P

21£I+lp' u-I£leu dP

----:-(:-:-1£:--1--=---'7""":")" and L~I (u) = --I--d-P (e-uuP+1£1) denotes a generalized La-
n + p . p. u
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Figure 3.1. (a) Diagram of the electric field of a linearly polarized paraxial beam of the form
E (r, T) = £T (rT' z) x F (z, T) x ei(kcz-wcT), at some constant time T. The coordinate axes
are displaced from the origin for visibility purposes, such that the dashed arrow emanates
from the coordinate origin (x, y) = (0,0). See text for further discussion. (b) The spatial
dependence of the transverse field---chosen to be an HG lD mode. In the x vs. y plot, darker
shading represents higher field intensity. The dashed white lines indicate slices in the x and
y directions along which one-dimensional transverse field profiles are given, which plot x and
y vs. the field amplitude E, respectively.

guerre polynomial. Also in (3.8), p is an nonnegative integer and eis an integer, which label

distinct orthogonal LG modes.

A temporal "snapshot" of a paraxial beam at time T -that is, an electric field distribu-

tion of the form E (r, T) = £T (rT' z) x F (z, T) x ei(kcz-wcT) obeying equations (3.6)-is given
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as Fig. 3.1. The longitudinal envelope function is given by the bold curve in Fig. 3.1(a), and

the longitudinal field amplitude is given by the height of the curve. The rapidly varying

carrier wave is shown inside the envelope function. We have chosen the transverse intensity

distribution lET (rT, z)1 2 to be that of an HG lD mode (Le., an Hermite-Gaussian mode of or-

der (n,m) = (1,0) as given by (3.7)) which lies entirely in the transverse plane as shown,

where darker shading represents higher field intensity. Fig. 3.1(b) shows the spatial depen-

dence of the transverse field ET (rT' z) along one-dimensional slices in the x and y directions,

which are given by the dashed white lines.

Hermite and Laguerre-Gaussian Transverse Modes

In what follows we are predominantly interested in the transverse properties of the so-

lutions (3.7) and (3.8), so that without loss of generality we may consider a cross-section of

these modes at their waist, where z = 0. We therefore take the limit as z approaches zero

in (3.7) and (3.8), which yield the following formulas for the HG and LG modes:

(3.9a)

(3.9b)

The solutions (3.9a) and (3.9b) (or equivalently, (3.7) and (3.8)) are interchangeable in

the sense that each form a complete basis for the transverse mode space, and that any mode

from one such basis may be described by a linear combination of modes from the other.
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Specifically, a LG;'£I mode may be expressed as a combination of HGnm modes via the

following relation [22],

( )
1£1 (2) 2.L LI£I 2p e~ieefJ = Wo ILG±I£I) e+~

Wo p W5 A~I p

-(2p+I£1) 2p+I£1 ( In) (In)= (-1)P 2 '" (2")k p(p+I£[-k,p-k) (0) H ~ H ~, 6 ~ k 2p+I£I-k k ,
p. k=O Wo Wo

(3.10)

where p,(p+I£I-k,p-k) (0) = (_1)k!:..- [(1 ± t)(P+l£I) (1 .. t)p] Similarly an HG mode
k 2kk! dtk ..., nm

t=O

azimuthally rotated by 45°-denoted as IHG~~5°)-so that x ---. x~y and y ---. x~y in

(3.9a), may be expressed as a combination of HGnm modes by [22],

Hn (x ± Y) Hm (x =f Y) = Wo IHG~~5°) e+~
Wo Wo Anm

~ T'{n-J~ (_2)' p~n-'.m-'J (0) IIn+m-, ( ~x) II, ( ~y), (3.11)

where p~n-k, m-k) (0) = (;~!k :t: [(1 ± tt (1 =f t)m]
t=o

Now, note that the sums in (3.10) are (3.11) are quite similar in form. In fact, if the

integer quantities nand m are respectively identified with p + 1£1 and p throughout, it is

seen that these sums are nearly identical except for a phase factor (_i)k associated with

the k"'-order Hermite polynomial II, ( ~Y) in each sum. To illustrate this connection

between the HGnm , HG~~50, and LG; modes, we have shown in Fig. 3.2 the cases of (3.10)

and (3.11) where the sums terminate at n+m = 2p+ 1£1 = 1. Each of the linear combinations
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Figure 3.2. Transverse mode intensity distributions showing the decomposition of HGto45°
and LG~l modes in terms of HGlD and HGlD modes. Each mode decomposition is of the
form HGlD+ei<P HGOl , with ei<P taking the values (1, -i, -1, +i) in Figs. (a), (b), (c), and (d)
respectively, thereby demonstrating the simple phase relationship between first-order modes.

of transverse fields in Fig. 3.2 has the form HG lD + ei<P HGOI ' with the relative phase factor

e-i<P between the HG lD and HGlD modes changing by increments of e-i~ = -i. In this way,

the HGto45° and LG~1 modes are simply related by a relative phase factor of -i.

I-D vs. 2-D Parity Transformations of HG and LG Modes

We now proceed to study the properties of the HG and LG transverse modes of (3.9) under

one-dimensional (I-D) and two-dimensional (2-D) spatial parity transformations, which will

provide a theoretical basis for our mode-sorting experiments.
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1-D Parity

One may define two independent 1-D spatial parity transformation operators fIx and fIy ,

which respectively act on the x and y coordinates of the transverse HG modes as follows:

fIx [ET (x, y, 0)] -t ET (-x, y, 0) ,

fI y [ET (x, y, 0)] -t ET (x, -y, 0) .

(3.12a)

(3.12b)

In other words, fIx takes x to -x but does not act on y, while fIy takes y to -y but does not

act on x. Note however that electric fields are vector-valued functions, so that fIx and fIy

transform not only the functional coordinates (x, y) of the fields, but also the field vectors.

The actions of the 1-D parity operators on the unit vectors x and yare given by

(3.13a)

(3.13b)

where u+ == Y and u_ == x, so that x - -x under fIx and y - -y under fIy • Equations

(3.12) and (3.13) completely define the actions of fIx and fI y on transverse fields.

Using the cylindrical coordinate definitions p = J x 2 + y2 and ¢> = tan -1 (~), one finds

that p -t P and ¢> - -¢> under the action of both fIx and fI y . Therefore, fIx and fIy act on

the p and ¢> coordinates of the transverse LG modes as



flx [ET (p, ¢, 0)] --7 ET (p, -¢, 0) ,

fly [ET (p, ¢, 0)] --7 ET (p, -¢, 0) .
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(3.14a)

(3.14b)

Substituting (3.9a) and (3.9b) into (3.12)-(3.14) then gives the transformation properties of

the HG and LG modes under the action of the I-D parity operators flx and fly:

flx IHGnm ) u± = ± (-If /HGnm ) u±,

fly IHGnm ) u± = =f (_I)m IHGnm ) u±,

fIx \LG;) u± = ± \LG;f) u±,

fly ILG~) u± = =f ILG;f) u±.

(3.15a)

(3.15b)

(3.15c)

(3.15d)

In deriving (3.15a) and (3.15b) the following property of the Hermite polynomials has been

used, Hq(-u) = (-I)q Hq(u), where u = x or u = y. Due to the relationship in (3.15a)

and (3.15b), we say that a transverse mode of the form IHGnm ) u± acts as an "even" mode

under a I-D parity flip flvif flvIHGnm ) u± = + IHGnm ) u±, and as an "odd" mode under

flv if flv IHGnm ) u± = -IHGnm ) u±, where v = x or v = y. Furthermore, from (3.15c) and

(3.15d) it is clear that the action of flu on an LG mode ILG;) simply changes the sign of e.

2-D Parity

It is straightforward to generalize the above results to the case of the 2-D parity trans­

formation fl xy , which is the operator product of flx and fly:
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~
Figure 3.3. (a) The successive action of 1-D parity operators fIx and fIy upon a two­
dimensional image. (b) The action of a 1800 azimuthal rotation about the z-axis upon the
same image. The transformations (a) and (b) yield identical results.

(3.16)

From (3.16) and (3.13), we find that the vectorial part of a transverse field is transformed

by 2-D parity according to

(3.17)
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which amounts to a trivial overall phase factor ei1f = -1 for both u+ and u_, in contrast to

the case of the 1-D parity flip operation (see (3.13)).

The 2-D parity operator thus takes x to -x, Y to -y, x to -x, and y to -y, which

is equivalent to a 1800 azimuthal coordinate rotation about the longitudinal (z) axis (see

Fig. 3.3). Therefore, the action of ITXY on a function involving cylindrical coordinates results

in the transformations p --t P and ¢ --t ¢ + 1r so that the coordinates of the HG and LG

modes are acted upon as follows:

ITXY [ET (x, y, 0)] --t ET (-x, -y, 0) ,

ITXY [ET (p, ¢, 0)] --t ET (p, ¢ + 1r, 0) .

(3.18a)

(3.18b)

Substituting (3.9a) and (3.9b) into (3.18a) and (3.18b) and using (3.17) then gives the

transformation properties of the HG and LG modes under the action of the 2-D parity

operator ITXY :

ITXY IHGnm } u± = - (-It+m /HGnm ) u±,

ITXY ILG;) u± = - (-l)I£IILG;£) u±,

(3.19a)

(3.19b)

where Hq(-u) = (-l)q Hq(u) has again been used in (3.19a), while ei£(</>+1f) = (_1)1£1 ei£</> has

been used in (3.19b). Since, as (3.19a) shows, the action of ITXY is independent of polarization,

we ignore the overall polarization transformation factor of -1 and say that IHGnm } acts as

an "even" mode under the 2-D parity flip ITXY if n + m is even, and as an "odd" mode under
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fI xy if n + m is odd. Similarly, from (3.19b) it is evident that ILG~) acts as an "even" mode

under fIxy if 1£1 is even, and as an "odd" mode under fIxy if 1£1 is odd, regardless of the

value of the radial index p. Furthermore, since ILG~) is an eigenstate of the orbital angular

momentum z-component operator -ili8¢>, we conclude that fIxy acts differently upon modes

with even or odd value of OAM 1£1.

Parity Sorting Mach-Zehnder Interferometers

The two experimentally implemented sorter designs [23] and [46], shown in Fig. 3.4, phys­

ically implement the respective 1-D and 2-D parity operations fIx and fIxy on the transverse

mode space, due to the presence of the extra mirror in one arm in the former case and the

orthogonally-oriented Dove prisms [50] in the latter. For the 1-D sorter of Fig. 3.4(a), this

means in particular that HGlD and HGm input modes propagating in the x-z plane exit

different ports as shown since they respectively have odd and even parity with respect to re­

flections about the y-axis in the transverse (x-y) plane. On the other hand, for the the 2-D

sorter of Fig. 3.4(b), input modes are distinguished on the basis of 2-D parity in the trans­

verse plane. Therefore, conversely to the prior case, the HGlD and HGm input modes will be

sorted into the same port by the OAM sorter, because these modes both have odd 2-D par­

ity. To our knowledge, no experiments were reported in which a sorter of the OAM type was

employed to sort HG modes prior to our recent work [48], so that this seems to have been

overlooked and the difference between the two sorters had not been previously emphasized.
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Figure 3.4. Previously realized I-D and 2-D parity sorters of the Mach-Zehnder type,
each with a tiltable phase-shifting glass plate (GP) in one arm, input ports 1,2 and output
ports A, B. All fields are linearly polarized in the y-direction. (a) Top view of the 1-D
parity sorter, which is distinguished by having an extra mirror in one arm. The thin lines
represent 50 : 50 beam splitters, while the thick lines represent mirrors. Upon entering this
interferometer, an LG~ mode is sorted into its constituent HGlD and HGOl components due
to complete constructive and destructive interference at the output ports. (b) In contrast,
the 2-D parity sorter (viewed here from the side) has a symmetric, trapezoidal Dove prism
in each arm. The cubes are 50 : 50 beam splitters, and the disks are mirrors. One of the
Dove prisms is rotated 90 with respect to the other, which causes a 180 relative rotation of
the two interfering beams in the transverse plane. In this case, both HGlD and HGOl modes
exit the same port, so that an incident LG~ mode is not decomposed. See text for further
discussion.
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EA )

_E_1_{Z _E_B_

E21
Figure 3.5. An ideal lossless beam splitter. Incident electric fields E1 and E2 mix at the
beam splitter and give rise to output fields EA and EB .

In order to show that the interferometers in Fig. 3.4 indeed act as described above,

we give below a theoretical treatment of their operation, which will act as a basis for the

development of our phase-stable 2-D parity sorting interferometer. We therefore turn now

to the task of describing the effects of the individual components of each interferometer on

the input fields.

Beam Splitter

Each of the interferometers in Fig. 3.4 sport a 50 : 50 beam splitter at their input and

output. The transformation of transverse modes due to the ideal lossless beam splitter,

shown in Fig. 3.5, may be modeled by imposing conservation of energy between its input

and output arms [51]. Mathematically, this requirement may be stated in terms of the linear

matrix equations



(3.20)

,....----------------- ---
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(
EA) (rIA t

2A
) (EI) ¢:} Eout = {fEin,

EB t lB r2B E2

along with the energy conservation constraint IEin l
2 == IEI I2 + IE21

2
= IEA I

2 + IEB I
2 ==

IEout l2. Here, the input and output electric field amplitudes EI, E2, EA, EB and the

beam splitter reflection and transmission coefficients rIA, r2B, tlB , t2A-all of which are in

general complex-are defined via Fig. 3.5, in an obvious notation (for example, rIA denotes

the percentage of the field magnitude IEII which exits port A of the beam splitter, thereby

contributing to the field magnitude lEAl). All input and output fields are assumed for the

moment to have identical polarization states.

Together, (3.20) and the energy conservation constraint impose the following conditions

on the reflection and transmission coefficients:

(3.21a)

(3.21b)

(3.21c)

(3.21d)

Writing rIA, r2B, tlB, t2A in terms of their respective complex amplitudes and phases

IrIA Iei(¢lA -¢lB) = _ hB Iei(¢2A -¢2B)

ItlBl It2AI '
(3.22)
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which is satisfied only if

(3.23a)

(3.23b)

Using (3.23a) along with (3.21a) and (3.21b) then yields

(3.24a)

(3.24b)

so that R2 + T 2 = 1. Furthermore, from (3.23b) we may without loss of generality choose

rPIA = rP2B == rPR and rPIB = rP2A == rPT provided rPR - rPT = ±~ is satisfied. Using this

relation, we arrive at a simplified form for the transformation (; given in (3.20):

(3.25)

where the convention rPT - rPR = +~ has been used in the last equality(. :ei~en)ceforth

ignore the irrelevant overall phase factor ei¢R, so that we may write (; == .
iT R

For a balanced 50 : 50 beam splitter R = T, so that R 2 + T 2 = 1 implies R = T = ~,

which yields a simple expression for the balanced transformation matrix (;B:



,....--------- -

55

(a)

Yl,,,-
~x

(c)

Y~nnra------D~~
x x

(e)

Y~n9-u-~~
x x

(b)

yilt.'·.•·..•··\-
x

(d)

Yl~ Y\.,,nun~mm'
X X

(f)

Figure 3.6. The actions of the mirrors and Dove prisms in Fig. 3.4 on y-polarized HG lD

and HGm modes. The reflections in the x-z plane due to the mirrors and Dove prisms in
(a)-(d) may be represented by the 1-D parity operator frx, while the reflections in the y-z
plane due to the Dove prisms in (e)-(f) may be represented by fry. For x-polarized modes,
(a)-(f) must be modified so that each output mode is multiplied by a factor of -1. See text
for further discussion.

A =_1 (1 i)1UB ;;:; .

y2 i 1

Interferometer Components

(3.26)

The actions of the mirrors and Dove prisms in Fig. 3.4 on the transverse mode space is

shown in Fig. 3.6. From Figs. 3.6(a) and 3.6(b), we see that the HGlD and HGOI modes

(when linearly polarized in the y direction) are respectively odd and even with respect to
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a single mirror reflection in the x-z plane. This implies that such a mirror reflection is

represented by the 1-D parity operator fIx since by (3.15a) and (3.15b), fIx IHelD)y =

-IHelD)y and fIx IHeOl )y = + IHeOl )y, respectively. Conversely, it is clear due to

symmetry considerations that a mirror reflection in the y-z plane is represented by fIy.

Since transit through each of the Dove prisms shown in Figs. 3.6(c)-3.6(f) also involves a

single mirror reflection in one of these planes as shown, we may represent their action by the

operators fIx for 3.6(c) and 3.6(d), and fIy for 3.6(e) and 3.6(f), respectively. Therefore, the

appropriate mode transformations for y-polarized HelD and Hem modes are fIx IHelD)y =

-IHelD)y, fIx IHeOl )y = + IHeOl ) y, fIy IHelD)y = IHelD )(-y) = -IHe lD ) y,

and fIy IHeOl) y = (-1) IHelD ) (-y) = + IHe lD ) y, corresponding to Figs. 3.6(c), 3.6(d),

3.6(e), and 3.6(f), respectively. For x-polarized modes, the above results must be modified

so that each output mode is multiplied by a factor of -1.

1-D Sorter Theory

Consider now the interferometer in Fig. 3.4(a). By (3.20) and (3.26), the electric field

subsequent to the input beam splitter, Eout , is given by E out = UBEin , where the electric

fields are displayed in bold to emphasize their vectorial nature. Since the lower and upper

interferometer arms respectively involve double and single mirror reflections in the x-z plane,

the appropriate operator to represent these reflections is
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(3.27)

where IT; = 1 has been used. Furthermore, since the glass plate may be tuned to impose an

arbitrary but uniform phase shift ¢, its matrix representation may be written as

~~)e 2

(3.28)

where the irrelevant overall phase factor ei ! has been dropped in the last equality. Finally,

the action of the output beam splitter is also of the form (;B' From (3.20), (3.26), (3.27),

A A A A 1
Eout = VB <I> II VB Ein = "2

where the choice of polarization u± for mode E1 is independent from that of mode E2 , U(±).

If we assume that the input fields E1u± and E2u(±) are both HG modes of the respective
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Eout =

(3.3:Lb)

(3.31a)

(3.32)

Since we are interested in the case where the interferometer sorts a single input beam, we

set the port 2 input beam E 2 equal to zero, so that (3.30) simplifies to

(
EA ) (cos 1: E1

)
En _ Sin2~ E, for E, odd, ± (-1)"' ~ -1,

(
EA ) ( t," Sin! E, )

'f' for E 1 even: ± (-1t 1 = +1.

EB tCOS 2" E1

When the input beam E1 is neither even nor odd, we may split it into its respective odd

and even components E1 = E~o) + E~e), so that by adding (3.31a) and (3.31b) together we

find that

(

EA ) 1 ( cos ~ E~o) + i sin ~ E~e) )

= 2" (. ¢ E(o) . ¢ E(e») .
EB - sm 2" 1 - 1 cos '2 1

Equation (3,32) contains two special cases which are important for applications, corre-

sponding to ¢ = 0 and ¢ = ~ (see Fig. 3.7). For ¢ = 0, (3.32) simplifies to

(3.33)
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Figure 3.7. Applicatiol1.''' of the interferometer based on I-D parity, denoted by the slashed
box. (a) For a well-defined incident HG mode, the interferometer acts as an achromatic
polarizing beam splitter when cP = 0 or cP = Jr. (b) For a well-defined incident HG mode

with cP = ~ or cP = 3;, the interferometer converts linear polarization to both right and

left circular, thereby acting similarly to a achromatic quarter wave plate aligned with the
coordinate axes. (c) An HC+45o mode, linearly polarized in either the x or y directions,
is sorted according to I-D parity when cP = 0 or cP = Jr. For this case the interferometer
therefore acts as a "polarizing beam splitter" for even and odd first-order HG modes. (d)

For cP = ~ or cP = 3;, an H Cto450 mode, linearly polarized in either the x or y directions,

is transformed into both ILCtl) and ILCO
l ) modes, thereby acting as an HG-to-LG mode

converter. See text for further discussion.
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from (3.33) we see explicitly that an input beam E 1 is split by the interferometer into its

respective odd and even components such that E~o) exits port A and E~e) exits port B.

Therefore, for an input state of the form IHGnm ) (x + y) (an HG mode linearly polarized at

45°), the interferometer acts as an achromatic polarizing beam splitter, since the even and

odd y and x polarizations are sorted into distinct output ports (see Fig. 3.7(a)). Further-

is even, the interferometer sorts the even and odd spatial modes IHGnem ) and IHGnom ) into

distinct output ports (see Fig. 3.7(c)). Equation (3.33) therefore describes the 1-D parity

sorter shown in Fig. 3.4(a), where this even-odd mode sorting is shown for a ILGtl) mode,

IT •
where no = 1, n e = 0, ml = 0, m2 = 1, and <l? = "2 (see FIg. 3.2).

For the second special case mentioned above, corresponding to ep = i, (3.32) becomes

(::)~ ~ (-~;::)+~~:\:)) )
Here, for the input state IHGnm ) (x + y), the interferometer acts as an achromatic quarter

wave plate with its fast and slow axes aligned with the coordinate axes, since the output

polarization becomes circularly polarized (see Fig. 3.7(b)). However, the interferometer

differs from a quarter wave plate in that both right and left circularly polarized beams are

generated, at the cost of the total input power being split between the two output beams. For

the first-order input state IHG+450) u± = (!HG lO ) + IHGOl )) u±, the interferometer outputs

ILGOI ) and ILGtl
) modes to ports A and B, respectively. In this case, the interferometer

acts as an achromatic mode converter which converts IHG+450) modes to ILG~I) modes,
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producing LG modes of each handedness at the cost of splitting the output power (see

Fig. 3.7(d)). We note here that in this case the interferometer is similar in function to the

astigmatic mode converter described in [22]. Finally, we also note that as the phase shift

¢ is cycled around through 1r and 3;, the interferometer again assumes the aforementioned

characteristics of a parity sorter and then a mode converter, respectively, but with the output

modes swapping ports. In Chapter IV we verify experimentally that this Mach-Zehnder

interferometer may be used as both a parity sorter and a mode converter.

2-D Sorter Theory

Consider now the interferometer in Fig. 3.4(b). In the top arm, the beam undergoes a fix

mirror reflection and then a fix Dove prism reflection as discussed in Fig. 3.6. In the bottom

arm, the beam undergoes a fiy Dove prism reflection followed by a fix mirror reflection. The

analogous 2-D operator to the 1-D case in (3.27) is therefore

(3.35)

where fi; = 1 and (3.16) has been used. Armed with (3.35), we may now describe the action

of the 2-D parity sorter on two arbitrary input vector fields analogously to (3.29), as
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If we assume that the input fields E1u± and E2u(±) are both HG modes of the re-

Eout =

(3.38a)

(3.38b)

Since we are again interested in the case where the interferometer sorts a single input beam,

we set the port 2 input beam E 2 equal to zero, so that (3.37) simplifies to

(

EA ) ( 2.' sin t~ E 1
)<p for E 1 odd: (-1)nl +ml = -1,

EB 2cos2"E l

(
EA ) (cos t E 1

)- 2 for E 1 even: (_lt1+m1 = +1.
E B - -sin~ E 1

Splitting E 1 into even and odd components E 1 = EiO) + EiE ) (with respect to 2-D parity),

and adding the above equations together as in (3.32) then yields

(3.39)
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(b)
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Figure 3.8. Applications of the Interferometer Based on 2-D Parity, denoted by the slashed
box. (a) The interferometer acts as a 2-D parity sorter when <p = 0 or <p = 1r, so that even
modes (with respect to 2-D parity) exit port A, while odd modes exit port B. (b) When

<p = ~ or <p = 3;, the interferometer imparts both +~ and - ~ phase shifts between the

even (n + m = 0) and odd (n + m = 1) modes, at the cost of the total input power being
split between the two output beams. The polarization states of the modes are not shown,
since they transform trivially under the 2-D parity operation.

For the special cases <p = 0 and <p = ~, (3.39) simplifies to the respective equations

(3040a)

(3040b)
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For ¢ = 0 then, we see from (3.40a) that the interferometer in (3.4)(b) acts as a 2-D parity

sorter, so that each HGnm mode contributing to the total input field E1-which obeys the

constraint n + m even-exits out port A, while each contributing mode satisfying n + m odd

1f
exits out port B (see Fig. 3.8(a)). Furthermore, for ¢ = "2 and with an input state of

the form Coo IHGoo ) + ClO IHGlO ) + Col IHGOl ) (where Coo, ClO, Col complex amplitudes), the

interferometer acts to impart a ±~ phase shift between the even (n + m = 0) and odd

(n + m = 1) modes (see Fig. 3.8(b)), analogously to (3.34). As in the case of the 1-D parity

interferometer, for ¢ = 1f and ¢ = 3; the 2-D interferometer respectively acts according

to (3.40a) and (3.40b), but with the output modes swapping ports. The present case is

simplified however by the fact that the field polarization vectors transform trivially under

the action of I1XY as shown in (3.17).

We will henceforth consider only the case where ¢ = o--the 2-D parity sorter. However,

we note that the ¢ = ~ setting for this interferometer may be useful for manipulating

quantum states of light in schemes utilizing entangled qutrits, c.f. [6]. For purposes of

comparison, a tabulation of the action of both the 1-D and 2-D parity sorters on HGnm

input modes of order n + m ::; 3 is included as Fig. 3.9.

Phase Stable 2-D Parity Sorting Sagnac Interferometer

The two experimentally implemented sorter designs [23] and [46] shown in Fig. 3.4 share

several similarities. Among these are their Mach-Zehnder character with two independent

arms, and their reliance on complete constructive and destructive interference at the output
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Figure 3.9. (a) A tabulation of the action of the the I-D sorter upon the HG modes of
order n + m :::; 3. The plus signs designate modal lobes which are in phase with each other
and 1800 out of phase with the unmarked lobes. Modes with an even value for n exit port A,
while modes with odd n-value exit port B (see Fig. 3.4(a)). (b) A tabulation of the action
of the the 2-D sorter upon the HG modes of order n + m :::; 3. The plus signs designate the
relative phases of the lobes as in Fig. 3.9(a). Modes with an even value for n + m exit port
A, while modes with odd n + m-value exit port B (see Fig. 3.4(b)).

beam splitter in order to sort certain transverse spatial modes into one of two distinct output

ports. Also, they both have the advantage of not relying on computer-generated holograms,

which are lossy in practice, so that their sorting efficiency is limited only by the transmission

and reflection coefficients of the constituent beam splitters mirrors, glass plates, and Dove

pnsms.

However, a major disadvantage of both the I-D and 2-D parity sorters mentioned above

is their Mach-Zehnder character, or more specifically the existence of two independent beam

paths in each interferometer. This makes them subject to phase noise and drift so that in

practice it is difficult to keep them aligned. Here we overcome this difficulty for the latter

design by demonstrating a novel type of 2-D parity sorter in the form of an out-of-plane
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Sagnac interferometer. Since the two interfering paths of the Sagnac are counter-propagating,

the interferometer is automatically phase-stable. As a result, experiments involving multiple

cascading interferometers are considerably more feasible when employing a Sagnac then with

a Mach-Zehnder interferometer. As we will show, such cascading allows for full sorting of

arbitrary superpositions of modes, including the GAM sorting schemes described in [45] and

[46].

The most straightforward modification of the 2-D parity sorting Mach-Zehnder inter­

ferometer of Fig. 3.4(b) to a Sagnac interferometer is to replace the output beam splitter

with a mirror, remove one of the Dove prisms, and rotate the remaining Dove prism 45°

about the beam propagation axis (see Fig. 3.10(a)). With this modified setup, the split

input beams propagate around the interferometer in both directions, so that the clockwise

and counter-clockwise propagating beams are each rotated 90° in opposite directions by the

Dove prism (see Figs. 3.10(b) and 3.10(c)). This type of Sagnac interferometer has actu­

ally been previously constructed for the purpose of direct interferometric measurement of

the transverse spatial Wigner function of light in one dimension [52]. In that case, it was

recognized that as the input beam was slightly laterally translated and tilted with respect to

the input axis, the corresponding fluctuations in the output intensity mapped out a function

of the translation distance and tilt angle proportional to the transverse Wigner function in

two-dimensional phase space associated with the plane of the beam translation and tilt. This

measurement scheme is based on the fact that the Wigner function may be expressed as the

expectation value of the "displaced" phase space parity operator liD (r, p), which performs
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Figure 3.10. (a) The most straightforward modification of the 2-D parity sorting Mach­
Zehnder interferometer of Fig. 3.4(b) to a Sagnac interferometer: an in-plane Sagnac inter­
ferometer with a single Dove prism in one arm, rotated at 450 with respect to the X axis
as shown. As in the Mach-Zehnder interferometer of Fig. 3.4(b), if a superposition of HGw
and HGOl modes enters port 1, both modes exit the same port (B), so that an incident LG6
mode is not decomposed. (b) A beam propagating from the vantage point of Q in (a) in the
direction shown by the gray arrow (counter-clockwise around the interferometer as viewed
from above) encounters the Dove prism oriented as shown, with the Z axis pointing into the
page. The beam therefore undergoes a _900 (clockwise) rotation, as is shown for an HGw
mode. (c) A beam propagating from the vantage point of R in (a) in the direction shown
by the gray arrow (clockwise) encounters the Dove prism as oriented 900 with respect the
clockwise propagating beam in (b), with the Z axis pointing out of the page as shown. The
beam therefore undergoes a +900 (counter-clockwise) rotation, shown for an H Gw mode.
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Figure 3.11. The out-of-plane 2-D parity sorting Sagnac interferometer. Mirrors M1-M3
cause the beam path to travel out of the x-z plane, tracing out two congruent sides of an
isosceles triangle in the x-y plane, with congruent base angles B and apex angle {3 = 7r - 2B.
For {3 = 90° (so that B = 45°), incident HC lD and HCOl modes exit the same port of this
interferometer, as do LC6 modes, which is also the case for the sorters in Figs. 3.10 and
3.4(b). See text for further discussion.

reflections about the phase space point (r, p) [53]. At the phase space origin (r = 0, P = 0)

the operator TID (r, p) acts on transverse modes as the 2-D parity operator TI XY ' which pro-

vides the interpretation that a 2-D parity measurement of a transverse mode is equivalent

to evaluating the transverse Wigner function of that mode at the phase space origin.

Despite its increased interferometric stability, the Sagnac interferometer with a Dove

prism of Fig. 3.10 has two disadvantages: the counterpropagating beams suffer from astig-
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matism of the optical wave fronts due to the internal Dove prism, and the numerical aperture

of the device (NA ~ 0.01) is limited by the prism's relatively small cross section. Both of

these disadvantages may be overcome by replacing the Dove prism and two of the mirrors

inside the interferometer with three mirrors oriented in such a way that the counterpropa­

gating beams are temporarily reflected out of the plane defined by input and output beam

paths, as shown in Fig. 3.11. This type of out-of-plane Sagnac interferometer has been suc­

cessfully employed to measure the transverse spatial Wigner function at the single photon

level [54]. In the improved design, the image-rotation action of the Dove prism is thereby

replaced by an equivalent image rotation due to the out-of-plane mirror reflections.

The Geometric Phase and Optical Image Rotation

As we will show, the reason that a rotated Dove prism acts equivalently to three mirrors

with a certain out-of-plane orientation is due to a geometric (Berry) phase induced by the

redirection of the wave vector (i.e., the momentum vector) of the propagating beam by

the reflecting and refracting optical elements. To see this, consider first a single mirror

reflection, shown in Fig. 3.12(a) for a y-polarized HGlO mode incident upon a mirror at

angle 0: in the X -Y plane. As indicated in the figure, we employ capitol letters (X, Y, Z) to

denote the "global" coordinate axes of the laboratory frame, while lower-case letters (x, y, z)

denote "local" axes attached to the particle frame, such that the positive z axis points in

the direction of particle propagation kc = z.
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Figure 3.12. (a) A y-polarized paraxial beam in an HGlD transverse mode incident upon a
perfectly conducting mirror at angle a in the X-Y plane of the laboratory frame (X, Y, Z).
The beam is traveling in the positive z direction with respect to a local coordinate system
(x, y, z) attached to the particle frame, such that the input and output wave vectors k1

and k2 , shown as solid arrows, both point along +z. (b) Analogous sharply curved but
continuous trajectory, defined by the solid line, with initial and final wave vectors k1 and k2 .

The viewpoint has changed to a "top view" with respect to (a), looking down at the X- Y
plane. (c) "Equivalent" sharply curved trajectory, defined by the solid line, with modified
initial and final wave vectors hI == k1 and h2 == -k2 . (d) "Equivalent" momentum-space
Poincare sphere construction corresponding to the trajectory in (c). The initial modified
wave vector hI evolves rapidly to final wave vector h2 , thereby sweeping out a geodesic on
the Poincare sphere connecting points Pi and P2. See text for further discussion.
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Recall now that any incident light beam in a wave packet with central (carrier) wave

vector kc = kcz may be expressed as a linear combination of modes of the form

E (p, ¢J, z, t) = £T (p, ¢J, z) X £L (z, t) e,

where

A iel ( ) lei (2 2) 2 . [ -1 ( z) ¥][; ( A.. ) = _p_ __P_ Lle\ _P_ - w~(z) -t e¢>-(2p+t'+1)tan Zo +2R(Z)

T P,'f',Z w(z) w(z) P w2 (z) e e

is the transverse field distribution,

(3.41 )

(3.42)

(3.43)

is the longitudinal function, and e is the unit polarization vector (d. (3.2), (3.3), and

(3.8)). We are interested in the properties of the modes (3.41) under the 1-D parity (mirror

reflection) operation fIx corresponding to the perfect reflection (Le., a reflection from a

perfectly conducting mirror) shown in Fig. 3.12(a). If we employ the circular basis e ~
1eu = M (x + icY'S'), the 1-D parity transformation rules (3.13) and (3.14) imply that

y2 '

fIx£T (p, ¢J, z) = £T (p, -¢J, z) ,

(3.44a)

(3.44b)

so that the form of the input beam E (p, ¢J, z, t) is unchanged except for the replacements
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words, the mirror reflection alters only the spin angular momentum and OAM of the beam

E (p, ¢, z, t), up to a overall sign in the amplitude.

Consider now applying a (local) rotation operator Ry (-rr), representing a rotation through

an angle 1r about the y axis, to the reflected state -£T (p, -¢, z) X£L (z, t) ELO". Under such a

rotation, which is equivalent to changing points of view from watching a particle propagating

toward the observer and watching the particle propagating away from the observer, we have

x - -x, Y --t y, Z --t -z and x --t -x, Y --t y, Z --t -z. This is equivalent to ¢ --t -¢,

eO" - -e-O", and z --t -z, so that the reflected field fIxE (p, ¢, z, t) = -£T (p, -¢, z) x

£L(Z,t)e-O" is transformed as follows: -£T(P,-¢,z) x £dz,t)e-O" --t +£T(P,¢,-z) x

£L (-z, t) eO". Therefore, we see that the rotation Ru (1r) cancels the effect of the reflection

fIx on the field E (p, ¢, z, t), at the cost of a longitudinal transformation z --t -z. If we

further assume that the beam is collimated (weakly focused) such that z « Zo and P « zo,

then the original field

E ( A. t) = A~I (_p_) 1£1 LI£I (~) - W~~Z) -i[£t/>-(2P+£+1) tan-
1 (1c!)]

P''f',Z, w(z) w(z) P w2 (z) e e

J .( ~ )x £ ((3) ei[({3-ke)Z-(w-we)tJd(3 x eZ
kez+ 2R(z) -wet eO",

after being reflected and rotated, may be expressed as

(3.45)

Ru (1r) fIxE (p, ¢, z, t) ~A~I (L) 1£1 L~I (2P
2

2
) e-~ e-i[lt/>+(2p+£+l)1c!]

Wo Wo Wo

x J£ ((3) e-i [({3-ke)z+(w-wc)t]d(3 x e-i(keZ(l+!~)+Wct) eO" (3.46)



where w (z) ~ wo, tan- 1 (3...) ~ 3..., 1
Zo Zo R(z)
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z
2' and z ---t -z has been used. Thus,
Zo

the field is unchanged under this transformation, except for a change of sign in the so­

called Gouy phase term ei
(2

p
+i'+l) tan-

1 (10), and a reversal in propagation direction of the

beam as is evident in the second line of (3.46), which is equivalent to {3 ---t -{3 and kc ---t

1 p2
-kc• Furthermore, since p « Zo implies that -2 2 « 1, we may neglect the phase front

Zo

curvature term in (3.46) to a good approximation. It follows from this that the transverse

(that is, (p, ¢)-dependent) part of the field E (p, ¢, z, t) is completely invariant under the

~ ~ i(2p+i'+I) tan- 1 (-=-)
transformation Ry (7f) IIx up to a Gouy phase term e ZQ ,while the longitudinal

part undergoes to effective transformation {3 ---t -{3 and kc ---t -kc•

Now, it is clear that one may model the perfect mirror reflection of Fig 3.12(a) as the

limiting case of a continuous trajectory with a sharp curve between input and output wave

vectors k1 and k2 at the point ofreflection, as shown in Fig 3.12(b), provided that the parity

inversion operator fIx is applied to the beam at the reflection point. However, in light of the

above result, we have an equivalent but alternative way of describing a perfect reflection:

instead of applying the parity flip fIx to the beam, one may think of the "equivalent"

trajectory where the output beam is transformed by the local rotation Ry (7f), with modified

input and output wave vectors hI == k1 and h2 == -k2 , as shown in Fig. 3.12(c). The

advantage of this equivalent treatment is for a continuous path in momentum space (i.e.,

with no reflections fIx), the geometric phase formalism of Chapter II may be applied. With

this in mind, we therefore construct the "equivalent" momentum-space Poincare sphere for

input and output wave vectors k1 and k2 using the modified wave vectors hI and h2 (see Fig.
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3.I2(d)). Since the quickly changing direction of the wave vector k at the reflection point

sweeps out an angle in the X-Y plane (in the global laboratory frame), the same statement

holds for the modified wave vectors h. Therefore, the modified momentum-space path of the

vector h sweeps out a geodesic (great circle) on the Poincare sphere as is changes from hI

to h2 , as shown in Fig. 3.I2(d). It is clear from the figure that in the limiting case where

the the curved path becomes infinitely sharp that hI and h2 should still be connected by the

unique geodesic shared by the cooresponding points PI and P2 on the surface of the sphere.

From symmetry considerations, we conclude that the above construction is valid for

mirror reflections in any plane, so that upon a second reflection involving input beam k2

and output beam k3 , the modified output wave vector is again equal to the physical output

wave vector so that h3 = +k3 . Due to this cyclic behavior of the modified wave vectors, for

the general case of several reflections we may therefore define the modified wave vector hi

incident upon the ith mirror of the system by the simple relation

(3.47)

where i-I is the number of mirror reflections experienced by the beam. We note here

that this modified unit wave vector has been extensively used by Galvez and Koch [55] and

by Galvez and Holmes [56] in order to study the relationship between out-of-plane mirror

reflections and the geometric phase, the existence of which was first pointed out by Kitano,

Yabuzaki, and Ogawa [57] and formalized by Segev, Solomon, and Yariv [58].
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Figure 3.13. (a) The Poincare sphere construction corresponding to the anti-clockwise
propagating beam path in Fig. 3.11 as discussed in the text. The beam path angles g and
f3 from Fig. 3.11 define the modified wave vectors hI - h4 , which in turn define the points
P1-P4 on the spherical surface as shown. The gray dashed lines denote the triangular closed
loop that results from successively connecting these points with geodesic curves. Note that
the axes (kx , ky , kz ) are oriented differently from the axes (X, Y, Z) of the corresponding
Fig. 3.11 for ease of display. (b) Plot of the accumulated geometric phase (beam rotation
angle) n vs. the parameter g. (c) Plot of the relative geometric phase (rotation angle)
IJ! (modulo 1r) of the two counter-propagating beams after propagating around the Sagnac

interferometer vs. g, emphasizing the two special cases where IJ! = 1r and IJ! = i. These two

cases correspond to the first and second cascaded interferometer stages for the GAM sorting
scheme in [45]. See text for further discussion.
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We now apply the aforementioned construction to the 2-D parity sorting Saganc inter­

ferometers of Figs. 3.10 and 3.11, beginning with our interferometer design of Fig. 3.11.

As discussed earlier, the mirrors labeled MI-M3 in the figure are oriented such that the re­

flected beam path travels out of the X -Z plane, and traces out the two congruent sides of

an isosceles triangle which lies completely in the X- Y plane. The action of the 50:50 beam

splitter (BS in the figure) gives rise to two counter-propagating paths of equal path length,

which is the reason for the phase-stability of the interferometer. We refer to the path in­

volving reflections off of the mirrors MI-M4 in the successive order M4-M3-M2-Ml as the

clockwise path, and that involving reflections of order MI-M2-M3-M4 as the anti-clockwise

path.

The modified momentum-space Poincare sphere construction corresponding to the suc­

cessive reflections of the anti-clockwise path in Fig. 3.11 is given as Fig. 3.13(a). Using

(3.47), we find that the beams incident upon mirrors MI-M4 in 3.11 correspond to the

modified wave vectors hI-h4 shown in Fig. 3.13(a). These vectors in turn define four points

PI-P4 on the unit sphere; however, due to the odd total number of out-of-plane reflections

coupled with the fact that k4 = -k I , we have hI = h4 , which implies that PI = P4, so that

only three of these points are unique. Therefore, connecting in order the points PI-P4 on

the spherical surface with geodesic curves (great circles) results in a triangular closed loop

with an anti-clockwise orientation as shown in the figure.

As discussed previously, we may apply the geometric phase formalism developed in Chap­

ter II to the momentum-space path defined by points PI-P4 in Fig. 3.13(a). Specifically, by
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(2.48d), a photonic (A = 1) spin-orbit wave packet of the form given in (2.12) propagating

anti-clockwise around the out-of-plane Sagnac interferometer experiences a geometric phase

accumulation of

(3.48)

(3.49)

where n is the solid angle subtended by the closed momentum-space curve delineated by the

dashed gray line in Fig. 3.13(a). Since the Poincare sphere is a unit sphere, n also equals

the surface area enclosed by the closed triangular geodesic surface, which may be calculated

via the following relation due to Euler [55]:

n 1 + cos a + cos (3 + cos 'Y
cos - = --------::-----

2 4 cos ~ cos !l cos 1-
2 2 2

In (3.49), a == 111 .112 , (3 == 112 .113 , and 'Y == 113 .114 are the angles between the respective helicity

unit vector pairs. In our present case (cf. Figs. 3.11-3.13), a = 'Y = ~' and (3 = 7r - 20, so

that the right hand side of (3.49) simplifies to 1 + cos(S7r - ~O), which is equivalent to sinO.
2cos - - 02

Therefore, we find for our design that n depends on 0 through the simple relationship

n .
cos "2 = smO,

¢:} n = 2 cos- l (sin 0) ,

(3.50a)

(3.50b)

The plot of n vs. 0 in Fig. 3.13(b), which has been composed from (3.50), shows that

n can be tuned to any value between 0 and 7r by choosing the appropriate value of the
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7f
parameter 0, which ranges from 0 ::; 0 ::; "2. Now, for the clockwise traveling beam, the

direction of the geodesic path of Fig. 3.13(a) is reversed, so that the accumulated geometric

phase has the opposite sign with respect to that of the anti-clockwise traveling beam: n ----7

-0. We therefore find that the relative geometric phase accumulation \]I between the two

counter-propagating beams after one trip around the interferometer may be expressed as

\]I = 7f - 120 - 7f1, as given through the plot of \]I vs. 0 in Fig. 3.13(c).

What are the physical consequences of the geometric phase 0 accumulated by a paraxial

LG mode ILG~)? To answer this question, we note that a circularly polarized LG mode is

proportional to eime<l>eu when expressed in the circularly polarized basis eu == x+ iaY. Or

equivalently, since equation (A.13c) in Appendix A shows that eu = eui<l> (.0 - aic,b) , we have

that

(3.51)

which comprises the entirety of the ¢>-dependence of the photonic state. The additional

geometrical phase factor <PB = - (a + mi) 0 then results in the following transformation on

the state IV; (kc )):

(3.52)

From (3.52), we see that the geometric phase accumulation of -0 is equivalent to an

azimuthal rotation of the particle wave function in the plane perpendicular to the direction

of propagation by the angle 0 (the fact that an azimuthal rotation of an LG; mode through
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an angle [2 is equivalent to multiplication by a phase factor e-imtO has been previously

pointed out in the context of HG-LG astigmatic mode converters [59]). This rotation affects

both the transverse spatial field distribution and the (vectorial) polarization state, as can

be explicitly seen in (3.52). Furthermore, since the rotation angle [2 is the same for all LG

modes, any linear combination of such modes will also be rotated though angle [2. As the

LG modes form a complete basis for the transverse mode space, it follows that an arbitrary

transverse beam image will be likewise rotated by the out-of-plane Saganc interferometer. As

should be clear from the above treatment, this conclusion generalizes to an arbitrary series

of mirror reflections: an arbitrary beam image and polarization state are rotated through

an angle [2 given by the solid angle subtended by the surface defined by connecting the

i modified wave vectors hi with geodesic curves (great circles) on the Poincare sphere in

momentum space.

We now construct the modified momentum-space Poincare sphere for the case of the

Sagnac interferometer with a Dove prism rotated by an angle () in the X - Y plane, as shown

in Fig. 3.14(a) for the clockwise propagating path as viewed from above in Fig. 3.10.

In this case, although the beam is refracted twice, there is only a single reflection, with

input and output wave vectors k2 and k3 as shown (we treat the beam refractions as sharp

curves similarly to the case of reflections, but without a parity flip). The modified wave

vectors are therefore constructed from the physical wave vectors via the relations hI = k1,

h2 = k2 , h3 = -k3 , and h4 = -k4 . Although the resulting curve, defined by points

PI-P4, is not closed, we may still apply (3.48) by closing it with a (unique) geodesic,
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as has been verified experimentally in [56]. The spherical surface area enclosed by the

curve is readily calculated using Fig. 3.14(a) using spherical coordinates via the surface

integral i() [i 1r

sin B'dB'] d¢/ = 2B, so that for the clockwise propagating path the image

and polarization are both rotated by angle -ODove, where

ODove = 2B. (3.53)

Analogously to Figs. 3.13(b) and 3.13(c), we have plotted the absolute and relative geometric

phase accumulations 0 (B) and W(B) as a function of the Dove prism tilt angle B in Figs.

3.14(b) and 3.14(c). From 3.14(c) it is evident that both interferometers transform the

transverse beam image and polarization state in an equivalent manner, as claimed at the

beginning of this section.

We note here that a series of cascaded Sagnac interferometers of either the out-of-plane

or tilted-Dove-prism type may be employed with different B values to measure the GAM of

a single photon to (in principle) arbitrary precision. Although a similar cascading scheme

has been previously proposed and carried out [45, 46] at the single-photon level with Mach-

Zehnder interferometers, such experiments are impractical when more than two or three such

interferometers are involved, or when the GAM of true single photons are being measured,

due to phase noise and drift. The phase-stable nature of the Sagnac interferometer overcomes

these difficulties, thereby making experiments involving multiple cascading interferometers

considerably more feasible. We will discuss in detail a proposed method to measure the

GAM of single photon states with our out-of-plane Sagnac interferometer in Chapter IV.
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Figure 3.14. (a) The Dove prism in the Sagnac interferometer of Fig. 3.10, tilted at an
angle 0 with respect to the X axis. The clockwise propagating beam is deflected by the tilted
Dove prism out of and back into the Y -Z plane as shown, giving rise to wave vectors kI-k4 .

(b) The Poincare sphere construction corresponding to the clockwise propagating beam path
in Fig. 3.10 as discussed in the text. The Dove prism tilt angle 0 defines the modified wave
vectors hI - h4 , which in turn define the points P1-P4 on the spherical surface as shown.
The gray dashed lines denote the wedge-shaped closed loop that results from successively
connecting these points with geodesic curves. Note that the axes (kx ,ky ,kz ) are oriented
differently from the axes (X, Y, Z) of the corresponding Fig. (a) for ease of display. (c)
Plot of the accumulated geometric phase (beam rotation angle) n vs. the Dove prism tilt
parameter O. (d) Plot of the relative geometric phase (rotation angle) W (modulo 1f) of the
two counter-propagating beams after propagating around the Sagnac interferometer vs. 0,
which yields the same result as for the out-of-plane Sagnac interferometer (see Fig. 3.13).
See text for further discussion.
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For the special case where the out-of-plane mIrrors of our Sagnac interferometer are

oriented such that f) = 450 in Fig. 3.11 such that fJ = 900
, the angles between the distinct

helicity vectors are all 900 so that the area enclosed by the loop is exactly one eighth of

the area of the entire sphere. This corresponds to a transverse rotation of n = ~ rads, or

900
, as may also be calculated using (3.50). In this case (0 = 450

), the out-of-plane Sagnac

interferometer becomes a 2-D parity sorter for any paraxial input field, since the relative

rotation between propagating and counter-propagating beams becomes 1800 as shown in the

plot of Fig. 3.13(c). In Chapter IV we employ our Sagnac with f) = 450 to present the

first 2-D parity measurements of Hermite-Gauss transverse spatial modes, demonstrating

experimentally the stable sorting of these modes according to their 2-D parity.
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CHAPTER IV

l-D AND 2-D PARITY: EXPERIMENTS AND APPLICATIONS

Introduction

In this chapter, we present experimental results demonstrating the measurement and

control of photonic transverse spatial modes, employing interferometeres based on both one­

dimensional (l-D) and two-dimensional (2-D) parity as described in Chapter III. In the case

of the interferometer based on l-D parity, we observed its predicted behaviour as both a l-D

parity sorter and an Hermite-Gauss to Laguerre-Gauss (HG-to-LG) mode converter (see Figs.

3.7(c) and 3.7(d)). In the case of the interferometer based on 2-D parity, we present the first

2-D parity measurements of Hermite-Gauss transverse spatial modes, and demonstrate the

stable sorting of these modes according to their 2-D parity. Additionally, we employ the 2-D

sorter to sort the output modes of a "three-mode" optical fiber. We show how the 2-D sorter

can be made to work at nearly 100% efficiency, and perform a detailed loss and efficiency

analysis of the device. We also propose several applications of this interferometer, including

its use as an alternative to holograms in spatial mode filtering, the measurement of the

orbital angular momentum (OAM) of single photons, the production of Bell states entangled

in first-order transverse spatial modes, and the production of heralded single photons in first-
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order transverse spatial states corresponding to an arbitrary point of the first-order spatial

mode Poincare sphere [25].

The 2-D parity sorting interferometer belongs to a larger class of interferometers which

differ according to the relative rotation W of their constituent propagating and counter-

propagating beams. For example, the 2-D sorter (with W = 180°) can also distinguish

between the zero-order (HGoo ) and first-order (HGm and HGlO ) modes, but not between

the zero-order and second-order (HG02 , HG2o , and HG ll ) modes; conversely, a Sagnac

with W = 90° can distinguish between HGoo and HGll modes (d. equation (3.50b) and

Fig. 3.13). By orienting M1 and M3 in Fig. 3.11 in order to select the successive values

1f 31f 71f . ., 1f 1f .
() = 4' 8' 16'''' one can achieve the relative rotatiOns W = 1f, 2' 4'''' reqmred for each of

the interferometer stages of the OAM sorter scheme in [45, 46]. In general, interferometers

with various values of W can be stably cascaded so as to sort photons with any value of

their OAM, which enables the manipulation of discrete multi-dimensional qudits encoded

in orbital angular momentum [6]. Furthermore, two-dimensional transverse spatial parity

provides a second type of qubit encoding which is based on continuous photonic degrees of

freedom, in addition to the scheme based on one-dimensional parity previously realized by

[8]. Unfortunately, to our knowledge it is not possible to design a Sagnac interferometer

that sorts according to 1-D parity, since the relative transverse rotation upon which our

Sagnac depends treats both spatial variables on an equal footing. Therefore, it appears that

encodings based on 2-D parity can be made more robust than those based on 1-D parity due

to the phase-stable manipulations of qubits enabled by this work.
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Figure 4.1. The experimental apparatus based on I-D parity. An external-cavity helium
neon laser (BeNe) produces an HG45 0 mode, whch acts at the light source. The clockwise­
propagating beam encounters an odd number of mirrors and a phase-shifting glass plate
(GP), while the counter-clockwise-propagating beam encounters as even number of mirrors.
The additional mirrors in the clockwise-propagating path allow both interferomter path
lengths to be equal so that the interferomter can function with the pulsed laser input from a

mode-locked laser (the condition of equal path lengths is fulfilled when 4d1 = (2 + J2) d2 ).

After being split by a 50:50 beam splitter (BSl), the clockwise- and counter-clockwise­
propagating beams interfere at a second beam splitter (BS2). A third beam splitter (BS3)
picks off part of the source beam to use as a reference beam (Ref) which is combined with
the interferometer beam via BS4 for the interferometry experiments discussed in the main
text. The output field at port A was measured with a CCD camera, as well as its intensity
pattern resulting from interference with the reference beam.

Experiments Based on I-D Parity

Our experimental apparatus based on I-D Parity was set up as shown in Fig. 4.1.

An external-cavity helium neon laser (BeNe) produces an HG450 mode, whch acts at the
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light source (for details on how we produced the HG450 mode, see the next section on 2­

D parity sorting). The apparatus shown in Fig. 4.1 includes two additional 50:50 beam

splitters and three additional mirrors in relation to the simplified version shown earlier in

Fig. 3.4(a). The clockwise-propagating beam encounters an odd number of mirrors and a

phase-shifting glass plate (GP), while the counter-clockwise-propagating beam encounters

as even number of mirrors. The additional mirrors in the clockwise-propagating path allow

both interferomter path lengths to be equal so that the interferomter can function with the

pulsed laser input from a mode-locked laser (the condition of equal path lengths is fulfilled

when 4d l = (2 + vi2) d2 ). After being split by a 50:50 beam splitter (BS1), the clockwise­

and counter-clockwise-propagating beams interfere at a second beam splitter (BS2). A third

beam splitter (BS3) picks off part of the source beam to use as a reference beam (Ref)

which is combined with the interferometer beam via BS4 for interferometry experiments as

discussed below.

The output field at port A was measured with a charge-coupled device (CCD) camera

(Thorlabs model number DC210), as well as its intensity pattern resulting from interference

with the reference beam. A representative sample of our experimental results are presented

in Fig. 4.2(a), which agree with the corresponding theoretical predictions shown in Fig.

4.2(b). In both figures, the first column indicates the input mode, while the second gives

the observed/predicted intensity distribution for that mode. Column three gives the phase

¢ imparted by the glass plate, while column four gives the observed/predicted distributions
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at output port A. The final column shows various observed/predicted interference patterns

between the input and output modes, as discussed in detail below.

As shown in the figure, we observed the interferometer acting as both a 1-D parity sorter

(1 = 0,7l') and an HG-to-LG mode converter (1 = i, 3;), as was derived theoretically in

Figs. 3.7(c) and 3.7(d). In order to demonstrate the phase structure of the output modes,

we interfered a single lobe of the reference beam with the output to port A as shown in Fig.

4.1, by steering the two beam paths together so that they were co-propagating with a slight

misalignment (the other lobe of the reference beam was blocked). The resulting intensity

measurements of the interference (see the final column of Fig. 4.2(a)) agree with the predicted

profiles (see the final column of Fig. 4.2(b)). For 1 = 0 or 7l' the interferometer acted as

a 1-D parity sorter, giving rise to a uniform fringe dislocation as shown. For 1 = i or 3;

the interferometer acted as an HG-to-LG mode converter, giving rise to the characteristic

"pitchfork" interference pattern associated with a mode with orbital angular momentum

e = 1. Additionally, we visually observed port B of the interferometer throughout these

experiments, and verified in each case that the output to port B always contained a mode

orthogonal to that of the output to port A. That is, when port A output an H COl mode,

port B output an HC lD mode, while when port A ouput an LCt l mode, port B output an

LCol mode, etc., consistent with the theoretical predictions of Chapter III.

We note here that experiments similar to the above have been done previously with a

similar 1-D parity interferometer [23]. However, by employing the reference-beam interfer­

ometry as described above, we have shown explicity the phase structure of the sorted modes,
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Figure 4.2. Observed (a) and predicted (b) output intensity profiles and interference pat­
terns for the interferometer based on I-D Parity. See text for further discussion.
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which was not done in [23J. Additionally, we also employed our device to manupulate the

1-D parity degree of freedom of a pulsed (mode-locked) Titanium-Saphire laser, with results

similar to that of Fig. 4.2. Due to the shorter coherence length of the mode-locked pulses,

we had to match the two interferometer path lengths, which was also not attempted in the

previously performed experiment [23J, which exclusively used a continuous wave laser source.

Experiments Based on 2-D Parity

Our experimental apparatus based on 2-D Parity was set up as shown in Fig. 4.3. An

external-cavity helium neon laser (ReNe) acts as the light source. Thin crossed metal wires

(W) of diameter 50 /lm were inserted into the laser cavity in order to excite higher order

RG modes by suppressing lower order transverse modes which lacked a nodal point near

the location of the wire. An intracavity iris (I) was then constricted in order to suppress

the remaining excited modes that had a higher order than the desired mode. The Sagnac

interferometer shown in Fig. 4.3 includes two Berek polarization compensators as well as

two additional 50:50 beam splitters in relation to the simplified interferometer version shown

in Fig. 3.11. The Berek compensators (New Focus model number 5540) were inserted into

the interferometer as shown in order to improve the interference visibility by correcting for

the Fresnel polarization changes due to the reflections from the dielectric mirrors M1-M3

[60, 61J. Without the compensators, the propagating and counter-propagating beams ended

up with unequal elliptical polarization states upon interference at the beam splitter BS1,

which led to poor interference visibility and therefore inefficient 2-D parity sorting. Since
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CCD CCD

Figure 4.3. The experimental apparatus based on 2-D parity. An external-cavity helium
neon laser (He\'e) acts as the light source, with thin crossed wires (W) and an iris (I) inserted
into the cavity in order to select the higher order HG modes. The propagating and counter­
propagating beams interfere at a 50:50 beam splitter (BSl), while a second 50:50 beam
splitter (BS2) separates the backward-propagating output mode (port A) from the forward­
propagating input mode. A third beam splitter (BS3) picks off part of the source beam to
use as a reference beam (Ref) for the interferometry experiments discussed in the main text.
Two Berek polarization compensators (BC) are placed inside the interferometer to correct for
the Fresnel polarization changes due to reflections from the out-of-plane dielectric mirrors.
The output fields at both port A and port B were measured with CCD cameras.
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Figure 4.4. Observed (a) and predicted (b) 2-D sorter output intensity profiles and inter­
ference patterns for a given input field. See text for further discussion.

one of the interferometer's output ports (port A in Figs. 3.11 and 4.3) is counter-propagating

with respect to the input beam, the addition of beam splitter BS2 acted to deflect half of the

output beam from this path so that it could be imaged on a charge-coupled device (CCD)

camera (Thorlabs model number DC210) as shown.

For a given input mode, we measured the output intensity profiles at both port A and

port B of the interferometer using a CCD camera. A representative sample of our experi-

mental results are presented in Fig. 4.4(a), which agree with the corresponding theoretical

predictions shown in Fig. 4.4(b). In both figures, the first column indicates the input mode,
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while the second gives the observed/predicted intensity distribution for that mode. Columns

three and four give the observed/predicted distributions at output ports A and B, respec­

tively. The final column shows various observed/predicted interference patterns between the

input and output modes, as discussed in detail below.

Note from Fig. 4.4(a) that the HGoo and HG ll modes exit port A, while the HG lD

and HGOI modes exit port B regardless of their orientation, as predicted in Fig. 4.4(b).

Furthermore, the HG15 mode (which has even parity since n + m = 1 + 5 = 6) exits port

A while the HG32 mode (which has odd parity since n + m = 3 + 2 = 5) exits port B.

The operation of this device for such higher-order modes with higher numerical apertures

demonstrates an advantage of the out-of-plane Sagnac of Fig. 3.11 over the Sagnac with

a Dove prism of Fig. 3.10, whose numerical aperature is limited by the Dove prism. We

sucessfully excited and sorted transverse modes with n + m ~ 5, being limited only by the

order of the modes we were able to excite in the laser cavity due to the finite diameter of

the wire.

In a second experiment, the wire and iris were removed and the light was coupled into and

out of a three-mode fiber (Thorlabs SM-780) which then acted as the input source to the 2-D

parity sorting interferometer. In this case, each of the HGoo , HG lD , and HGol-like modes

were excited in the fiber before being out-coupled and passing through the interferometer.

The Saganc then sorts the fundamental (even) HGoo mode, which exits out of port A, from

an equal superposition of (odd) HG lD and HGOl modes, which interfere together to make a

diagonal HG mode which exits out of port B. In this way, our apparatus sorts the output of
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a three-mode fiber into its constituent zero- and first-order mode families as shown in the

last row of Figs. 4.4(a) and 4.4(b) (the theory plot is for a field composed of 85% HGoo

and a 15% balanced superposition of first-order modes). This explicitly demonstrates the

usefulness of our 2-D parity sorter as a "beam splitter" for even and odd transverse spatial

modes (with respect to 2-D parity), while at the same time suggests that it can be employed

as an alternative to relatively lossy holograms in spatial mode filtering, as discussed below.

In order to demonstrate the phase structure of the sorted HG modes, we employed a

third beam splitter BS3 in order to "pick off" a portion of the input beam to use as a

reference beam (Ref in Fig. 4.3), similarly to the 1-D parity experiment of Fig. 4.1. We

then interfered the reference beam for several input modes with their corresponding parity­

sorted output modes by steering the input and output beam paths together so that they were

co-propagating with a slight misalignment, and recorded the resulting intensity patterns as

the final column of Figs. 4.4(a) and 4.4(b). In order to interpret these results, recall that the

output beam has been rotated 90° with respect to the input beam, regardless of output port.

This has no effect upon the rotationally symmetric HGoo mode, so the familiar interference

fringes of a standard Mach-Zehnder interferometer are observed. However the 90° rotation

does effect the first-order modes, so that the next two rows exhibit an interference pattern

resulting form the superposition of the input HG mode and its 90° rotated counterpart.

Note the characteristic uniform fringe dislocation of the vertical fringes in both of these

plots, which shows the nontrivial phase structure of these modes as they interfere. For the

HG450 mode, one would expect a similar dislocated pattern, but rotated by 90°. However,
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practical considerations required the presence of an extra mirror along the reference beam

path in order to interfere the reference and output beams. Since an extra mirror reflection

(i.e, a I-D parity transformation) in the x-y plane transforms an HG450 mode into its 900

rotated counterpart, the presence of the extra mirror canceled the effect of the out-of-plane

rotation, so that the resulting interference pattern (not shown) resembled that of the HGaa

mode, which did not exhibit the phase structure of the mode. A similar issue occurs with

the HG ll mode, which is identical to its 900 rotated counterpart up to an overall phase.

In order to more clearly demonstrate the desired phase structure of the HG450 and HGll

modes, we therefore steered the output beam so that its propagation axis was transversely

shifted with respect to the reference beam while still being (nearly) collinear with respect

to it. For the case of the HG450 mode, the transverse shift was directed both down and to

the right, while for the HGll mode it was directed completely downwards. In this way, the

interfering beams were only partially overlapping so that the resulting interference patterns,

included in the fourth and fifth columns, clearly show the characteristic fringe dislocation

effect.

Efficient 2-D Parity Sorting

Due to the 50% loss of the signal from port A from the presence of the 50:50 beam

splitter BS2, the setup described above was not capable of sorting single photons with high

efficiency. However, by replacing beam splitter BS2 with a Faraday isolator and appropriately

adjusting the Berek polarization compensators, 100% efficiency can be obtained in principle.

A Faraday isolator (shown in Fig. 4.5) consists of a piece of Faraday glass with a polarizing
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Figure 4.5. A Faraday isolator, consisting of a piece of Faraday glass (FG) with a polarizing
beam splitter on each side (PBSl and PBS2). (a) An input photon (propagating left to
right) polarized at positive 45° angle with respect to the vertical is completely transmitted
and becomes vertically polarized. (b) A back-propagating (from right to left) output photon
from port A of the Sagnac with vertical polarization is completely transmitted through PBS2,
but is subsequently completely deflected from PBSl. See text for further discussion.

beam splitter (PBS) on each side. The application of a uniform magnetic field causes the

Faraday glass to act as a polarization rotator via the Faraday effect [39]. The first PBS

(PBSl) is oriented at a positive 45° angle with respect to the vertical, such that an incoming

photon polarized along this same direction will be completely transmitted. Conversely, the

second PBS (PBS2) is oriented vertically (at a 45° angle with respect to the first), in order
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to completely transmit vertically polarized photons. Therefore, the polarization state of an

incoming photon initially polarized at 45° with respect to the vertical will remain unchanged

as the photon is completely transmitted though PBSl, but will then be transformed to

vertical polarization so that the photon is also completely transmitted through PBS2, as

shown in Fig. 4.5(a). However, an arbitrarily polarized photon propagating through the

isolator in the opposite direction will have its horizontally polarized component deflected

by PBS2, while its vertically polarized component will be transmitted and subsequently

rotated by the Faraday glass to a negative 45° angle with respect to the vertical, so that this

remaining component is completely deflected by PBSl.

Applying this to our current problem of sorting efficiency, one finds that although our

backwards-propagating beam from output port A will be completely deflected as desired upon

employing a Faraday isolator, it would also in general be separated into two different paths by

the two PBS's. Although one can easily recombine these beams using a half wave plate and

an additional polarizing beam splitter, such a separation and recombination is undesirable as

it introduces the same phase noise and drift that gives our setup an advantage over previous

Mach-Zehnder-based 2-D sorter implementations. In our experiment, we can overcome this

difficulty by adjusting the Berek compensators such that given a vertical input polarization,

the output polarizations of both port A and port B are vertical, which we have verified is

indeed possible experimentally. Therefore, with the compensators appropriately adjusted,

we conclude that back-propagating photons from port A will be completely transmitted by

PBS2 and completely deflected by PBSl, as shown in Fig. 4.5(b). In light of this, it is
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apparent that PBS2 of Fig. 4.5 is actually unnecessary, however we have included it because

of the practical consideration that Faraday isolators are readily commercially available in

the form discussed above (e.g. Thorlabs model number IO-3-633-LP). We conclude that

through the use of a Faraday isolator in conjunction with the Berek compensators, 100%

of the output field from port A can be deflected into a single beam path that is distinct

from the input path, so that our 2-D parity sorting Sagnac is in principle 100% efficient

with respect to both output ports. A realistic loss analysis supporting this efficiency claim is

included below, where we incorporate the effects of beam splitter imbalance and loss on the

sorting and transmission efficiencies and find that both can be made to exceed 99% using

readily available optics.

2-D Sorter Efficiency and Loss Analysis

Using standard beam-splitter theory and taking into account the action of the out-of­

plane mirror configuration on the nonreciprocal phase shifts of the spatial modes (see Chapter

III), we find that given input fields with even and odd parity (E~~en and E::dd), the output

fields are

E:Ven = VT (tr + rt) E~~en = 2VTtrE~~en

E~en = VT (t2
- r2

) E~~en

E~d = VT (tr - rt) E~~d = a

E~dd = VT (t2 + r2
) E~~d' (4.1)
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where t and r are the beam splitter transmission and reflection coefficients for the input field,

while T ~ 1 is the round trip intensity transmission coefficient, which takes into account

reflection losses in the Sagnac due to imperfections in the mirrors and Berek compensator

anti-reflection (AR) coatings. Also in (4.1), E~en, E~dd and E~en' E!t:td are the respective

output fields associated with ports A and B.

Ideally, T = 1 and t = r = I"{ for the 50:50 beam splitter which gives E~en = E~~en,

E!t:td = E::dd, and E~en = E1dd = 0, so that the sorting efficiency is 100%. However, a beam

splitter may be more realistically modeled by expressing the beam splitter transmission in

the form t = I"{ (1 + ~), where f « 1is a measure of the beam splitting ratio imbalance.

Employing the standard constraint r 2 + t 2 = 1 yields the reflectivity as r = v'1="t2 ~

I"{(1 - ~), where only terms first order in f have been retained. Since there are four

AR coatings in one Sagnac round trip (two for each Berek crystal surface) and also four

additional mirror reflections involving losses comparable to that to the AR coatings, we find

that T = (1 - 8/, where 8 is the loss associated with each interface. In what follows we will

ignore any losses due to the beam splitter, since for AR coated beam splitters the effects

casued by such losses are generally negligible in comparison to those caused by f as well as

the cumulative loss along the rest of the interferometer path as quantified by T.

In order to obtain an expression relating input and output intensities, we substitute the

above expressions for t and r into (4.1) and square both sides, which yields

f A ,...., Tf in
even ~ even
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[ E "-' 2T[in
even ~ E even

[ E "-' TJin
odd "-' odd , (4.2)

where J:Uen == (E:Uen)2, etc., and only terms of lowest order in (have been retained. Armed

with (4.2), we define the Sagnac sorting efficiency Es (i.e., the sorting visibility) in terms of

the ratio of the "dark" port output intensity to that of the "bright" port,

Jdark

Es == 1 - --.- > 1 - (2
jlmght -

(4.3)

while expressing the total Sagnac transmission efficiency ET in terms of the ratio of the

"bright" port intensity to that of the input field,

[bright

ET==-.-~T.Jtn (4.4)

The inequality in (4.3) follows from the fact that Es ~ 1-(2 or unity for even and odd modes

respectively, while (4.4) holds approximately for both mode types. We therefore conclude

that the beam splitter imbalance ( has the largest effect upon the sorting efficiency, while

the losses associated with the transmission T do not affect Es, but only the total photon

flux through both ports.

Broadband beam splitters are readily available with splitting ratios of 55:45 or better,

while AR coatings are available with losses of less than 0.1%, which imply values of about

0.1 and 0.001 for ( and 8 respectively, thereby yielding Es ~ 0.99, and ET ~ T ~ 0.99 such

__ I
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that the sorting and transmission efficiencies can be made to be greater than 99%. In other

words, for a given input mode the "dark" port intensity can be made to be at least 100

times less intense than that of the "bright" port using standard equipment. For a precision

beam splitter with splitting ratio 50.5%:49.5% this factor reaches 104
, which corresponds

to an efficiency of 99.99%, thereby supporting our claim of high efficiency in principle. In

our experiments (using standard, non-precision optical equipment), we achieved better than

95% sorting effeciency Es for all input modes. We believe the discrepency between our

experimental result and our efficiency analysis is due to a lack of purity of our input modes,

so that an odd input mode, for example, actually had a small even component due to

imperfections in the exernal cavity laser source. Since the above analysis yields such a high

effiency in principle, we conlclude that in practice polarization overlap may be the chief

limiting factor in the operation of the device.

Applications of 2-D Parity Sorting

First-Order Mode Filter

One particularly useful characteristic of our Sagnac interferometer is its ability to distin­

guish between zero-order and first-order transverse HG modes. When used in conjunction

with a three-mode optical fiber, this ability allows the Sagnac to act as a spatial mode filter

that passes only the first-order HG modes while rejecting all other mode orders. To see this,

consider a linearly polarized monochromatic paraxial beam with electric field E (x, y, z) e-iwpt

coupled into an optical fiber with input and output coupling lenses as shown in Fig. 4.6(a)
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Figure 4.6. A spatial filter for zero and first-order HG modes. (a) A three-mode optical
fiber (3MF) with input and output coupling lenses (CL). The fiber, which has a parabolic
refractive index profile, acts as a mode filter upon an arbitrary transverse input beam l\]io) =

00

L Cnm IHGnm ) such that upon coupling into and out of the fiber the resulting beam state
n,m=O

is of the form I~F) = Coo IHGoo ) +ClO IHGlD ) +cOl/HG01 ). (b) Inserting a 2-D Parity Sorter
(S) after the fiber separates the zero and first-order modes into ports A and B, respectively.

(we align the fiber with the z-axis and place the origin at the fiber input face). Such a

beam comprises a general solution to the scalar paraxial wave equation, of which the parax-

ial HG modes form a complete basis [49]. Employing the notation E (x, y, z) == I~o), one

may therefore write
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(4.5)

where Cnm == ("po IHGnm) is the overlap integral between the incident field and the HGnm

mode, and the constant Eo is the electric field magnitude. When the fiber and input coupling

lens are properly aligned, the beam will be centered coaxially with the fiber, and the location

of the beam waist will coincide with the plane of the fiber input face at z = O. Under these

conditions, the paraxial HG modes evaluated at the fiber input plane have the simplified

transverse form given in equation (3.9a) of Chapter III,

(4.6)

(4.7)

In comparison, the eigenmodes of an optical fiber with a parabolic refractive index profile

n (p) = no (1 -~::) obeying the weakly guided condition ~ ~ 0 are well approximated

[62J by the linearly polarized Laguerre-Gauss modes ILG~):

ILG~) ex (~)'el L~el (v::) e-~5eieq),

where a is the fiber radius, V == wpnoa~ is the normalized frequency, the L~el are general­
C

ized Laguerre polynomials, and we have employed transverse cylindrical coordinates (p, ¢J).

Furthermore, for sufficiently small a, the higher order modes will be cut off [63J so that the

fiber will support only the three LG modes ILGg), ILGtl), and ILGol ), or equivalently

the three HG modes IHGoo ), IHGw), and /HGOl ) (of course, counting the two possible or-

thogonal polarization states for each mode means that such a "three-mode" fiber technically
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supports six distinct modes). Therefore, regardless of the form of the transverse input state

l?Po) in equation (4.5), a weakly guided parabolic fiber will in principle filter out the higher-

order HG mode contributions while transmitting the fundamental and first-order modes with

high efficiency such that the remaining output state ?PF will have the form

I?PF) = Coo IHGoo) + ClD IHGlD ) + COl IHGOl ) (4.8)

provided that the mode matching condition Wo = a# is met. Given this fiber-filtered

state, our Sagnac can then sort I?PF) such that the output modes at port A and port Bare

I?PA) = Coo IHGoo ) and I?PB) = ClD IHGlD ) + COl IHGOl ), respectively, as shown in Fig. 4.6(b).

Measuring the GAM of Single Photons

In addition to the HG modes, an eth order LG;£ mode is sorted by the 2-D parity-based

interferometer according to whether e is even or odd, which parallels the case of HGnm

mode sorting according to the even/odd parity of n + m. Because of this, the above sorting

experiments on HG modes also demonstrate that stable, cascadable, single photon GAM

sorting schemes corresponding to those discussed in [45, 46] are indeed feasible with our

interferometer. Specifically, by orienting M1 and M3 of Fig. 3.11 in order to select the

. I 7r 37r 77r h' hi' . ,T, 7r 7r
succeSSIve va ues () = 4' 8' 16'''' one can ac leve t e re atIve rotatIOns 'cl' = 7r, 2' 4''''

required for each of the interferometer stages of the DAM sorter scheme in [45, 46]. As

discussed in [46], a tiltable phase-shifting glass plate in one of the Mach-Zehnder arms

introduces an adjustable relative phase difference between the two interferometer paths, in

addition to the phase difference already introduced by the transverse spatial rotation. This
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additional relative phase is needed in order to distinguish between modes possessing odd

OAM values without the use of holograms [4], which are lossy in practice. Since our device

is a common-path interferometer, a glass plate cannot introduce the required relative phase

shift between the counter-propagating interferometer paths. However, one may surmount

this difficulty by employing a device which imparts a variable phase shift that is dependent

upon whether the photon is propagating forwards or backwards through it.

This device consists of of a tiltable birefringent waveplate surrounded on both sides by

identical lengths of Faraday glass distinguished only by the direction of the applied magnetic

fields (B) permeating them as shown in Fig 4.7. The uniform magnetic fields cause the

Faraday glass to act as a polarization rotator via the Faraday effect [39], with the sense of

rotation depending of the direction of the applied field. Upon entering the device from the

left, a right-propagating vertically polarized photon undergoes a polarization rotation such

that upon entering the waveplate the polarization is aligned with the waveplate's fast axis.

The waveplate then imparts a phase shift to the photon before its polarization is returned

to its original state, as shown in 4.7(a). Conversely, a vertically polarized left-propagating

photon undergoes a transformation which leaves its polarization aligned with the waveplate's

slow axis. Therefore, the left-propagating photon experiences a different phase shift than the

right-propagating photon before its polarization is returned to vertical, as shown in 4.7(b).

The waveplate can be tilted about its fast or slow axes in order to vary this relative phase

shift, similarly to the standard method of tilting a thin glass slide. By employing one of these

phase shifting devices inside our Sagnac interferometer, one may effect variable phase shifts
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Figure 4.7. A device that imparts a relative phase shift between counter-propagating fields,
consisting of a tiltable birefringent waveplate (WP) with identical lengths of Faraday glass
(FG) on each side, distinguished only by the direction of the applied magnetic fields (B)
permeating them. (a) A vertically polarized right-propagating photon becomes aligned with
the fast axis of a birefringent waveplate (axis is denoted by the bold line), which induces
a phase shift. (b) A vertically polarized left-propagating photon becomes aligned with the
slow axis of the waveplate, thereby experiencing an unequal phase shift when compared to
the forward-propagating beam.
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between the propagating and counter-propagating beams without changing the polarization

state of the light.

We conclude that our Sagnac is capable of sorting odd GAM-valued photons from one

another without the use of comparatively lossy holograms. Therefore, like the device of Fig.

3.4(b), our interferometer is able to sort and measure photons possessing arbitrary absolute

GAM values with 100 % efficiency in principle. Furthermore, as our Sagnac interferometer

is phase-stable, it provides, for the first time, a practical way to realize a multiple-stage

cascaded sorting scheme for single photon states.

Applications to Quantum Information Processing

Here we propose two applications of 2-D parity sorters to quantum information process­

ing (QIP) with transverse spatial modes. Both make use of spontaneous parametric down

conversion in addition to the first-order mode filter discussed above, as shown in Figs. 4.8(a)

and 4.8(b). In both cases, a crystal with a X(2) nonlinearity is cut and oriented for Type-II

collinear phase matching and pumped with a sufficiently weak cw laser in a well-defined HG

mode HGnm , such that the resulting state is predominantly a superposition of the vacuum

and a two-photon state /w) = C11Ivac)) + C21Iw2ph)), where C1 ~ C2 and the "double-ket"

symbol II )) denotes Fock-space states of the electromagnetic field [64].

When sufficiently narrowband filters centered at half the pump frequency wp are em­

ployed, the co-propagating two-photon state IW2ph) is frequency degenerate, and is therefore

not entangled in the spectral degree of freedom. However, photons have four degrees of

freedom, and jW2ph) is entangled in each of the remaining three (polarization and the two
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transverse coordinates). In particular, if the appropriate birefringent phase compensators

are used [2], then the biphoton mode function corresponding to the two-photon component

/W2ph) of the state /w) can be written as [2, 7]

(4.9)

where IH) and IV) denote the horizontal and vertical single-photon polarizations, and l<Pnm)

denotes the spatial portion of the biphoton mode function. In [7], l<Pnm) was expanded in

terms of the HG modes for an arbitrary HG pump beam HGnm, and shown to be entangled:

In terms of the HG mode functions, l<Pnm) takes the form

00

l<Pnm) = L cjJ:;t IHGjk ) IHGst )
j,k,s,t=O

(4.10)

where the specific coefficients cjJ:;t depend on the order nm of the pump beam via equation

(18) of [7]. As shown there, the expansion contains an infinite number of nonzero terms, and

converges slowly in general. However, many of the coefficients cjJ:;t are zero due to selection

rules. We apply this result below in two special cases.

Bell State Generation

The first QIP application we discuss is the production of Bell states entangled in first-

order transverse spatial modes, as shown in Fig. 4.8(a). An HG Bell state generation

experiment similar to this has been carried out by [6], which used holograms to sort and de-

tect spatial modes. However, employing our Sagnac interferometer in the place of holograms
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Figure 4.8. Possible applications of a 2-D parity sorter to quantum information processing.
(a) Proposed scheme to produce Bell states entangled in first-order transverse spatial modes.
(b) Proposed scheme to produce heralded single photons in arbitrary first-order transverse
spatial states.

will provide an improvement in efficiency over standard holographic techniques. In the cur-

rent setup, the pump beam is in an HGoo mode, and following [7] we find that the spatial

part of the down converted biphoton mode function has the form

I¢oo) = Co IHGoo ) IHGoo ) + Cl (IHGw) IHGw) + IHGOl ) IHGOl ) )
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+ C2( IHGoo ) IHGo2) + IHGo2 ) IHGoo ) + IHGoo ) IHG2o ) + IHG2o ) IHGoo ) ) + ...

(4.11)

1
where Cl = 2co ~ 0.04, and C2 ~ -0.03 under typical experimental conditions (pump

beam width 0.1 mm and crystal length 1 mm), and all other coefficients of total order

j + k + s + t = 2 are zero. The omitted terms in (4.11) all involve biphoton mode functions

of total order j + k + s + t ~ 4. However, since each individual photonic mode is filtered by

the Fiber-Sagnac combination as discussed above, the mode function in (4.11) retains only

its first-order component, so that the (renormalized) mode function exiting port B is given

by (4.9) and (4.11) as

(4.12)

as shown in the figure. Thus, the filtered biphoton mode function is maximally entangled in

both polarization and first-order spatial modes. This is a Bell state.

We note here that the two photons comprising the Bell state are co-propagating; in

order to turn this source into "useful" entanglement, one must separate these photons onto

two separate paths without destroying the entanglement relationship. This can be done by

inserting a 50:50 beam splitter after port B, albeit with a 50% loss of the entanglement

source. To obtain the HG-entangled Bell states without such a loss, one may instead use a

polarizing beam splitter. The co-propagating photons are then path-separated with the cost

of destroying the polarization entanglement, while the spatial mode entanglement remains.
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Heralded Photons in Arbitrary Spatial Modes

We now consider the second application of our mode sorter, shown in Fig. 4.8(b). In

this setup, the pump beam is a first-order HG lO mode rotated through an angle of 45° in

the transverse plane, denoted as HG45o. Since HG450 comprises an in-phase superposition

of HG lO and HGOl modes, we express it in terms of these, and again employ equation (19)

of [7], finding that the down-converted biphoton mode function is

1¢>45°) == l¢>lO) + I¢>Ol) = Cl (IHG lO ) IHGoo ) + IHGoo ) IHGlO )

+ IHGOl ) IHGoo ) + IHGoo ) IHGOl ) ) + ... (4.13)

where all other coefficients of total order j + k + s + t = 1 are zero. Similarly to the

previous case, the omitted terms in (4.13) all involve biphoton mode functions of total order

j + k + s + t ~ 3, and are therefore filtered by the fiber. Therefore, the action of the Sagnac

on the present fiber-filtered biphoton mode function is to path-separate the photons in the

fundamental mode 100) from those in the higher modes. Thus, upon exiting the Sagnac the

biphoton mode function is

(4.14)

where IHG450) == IHG lO ) +IHGOl ) and A and B label the output ports, so that the detection

of a IHGoo ) photon in port A heralds a single polarization-entangled photon in the pure

spatial mode IH G450) in port B.
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In order to produce heralded single photons in arbitrary (first order) spatial modes, one

may apply a directional compression stress on the three-mode fiber with two plates as shown

in Fig 4.8(b). Such a compression breaks the cylindrical symmetry ofthe fiber medium which

causes the non-cylindrically symmetric HGlO and HGm modes to experience differing phase

velocities as they propagate though the fiber, resulting in a nonzero relative phase at the

fiber output that is controllable by the magnitude and direction of the applied stress [65].

That is, the compressor acts analogously to a fractional wave plate for polarization, with

principal axes aligned parallel and perpendicular to the direction of compression, and with

the degree of phase retardation proportional to the amount of stress. In the case illustrated,

the biphoton mode function propagating in the fiber (before compression, but after being

filtered) is /1fIF) = IHGoo ) IHG45o) + IHG45o) IHGoo ), the direction of compression is along

the y axis, and the magnitude is such that so that the HGlO and HGm mode components

experience a relative phase factor of ei~ = i. Therefore, the spatial part of the single­

photon mode function IHG45o) == IHG lO ) + IHGOl ) becomes ILGtI) == IHG lO ) + iIHGOl )

after passing through the compressor, so that the heralded single-photon mode function at

Sagnac output port B is both polarization entangled and in a well-defined first-order spatial

mode:

11fIB) = ILGtI
) ® (/H) IV) + IV) IH) ) (4.15)

We note that to cover the entire Poincare sphere of first-order transverse spatial modes

[25], two such successive compressors are needed with different orientations, and with one
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applying twice the amount of pressure as the other, in analogy with the requirement of a

half-wave plate followed by a quarter-wave plate in order to turn linearly polarized light into

light of an arbitrary polarization state. Also, the fiber compressor as shown in Fig. 4.8(b) can

be used in conjunction with the setup in Fig. 4.8(a) in order to produce, for example, LG­

entangled bell states. Finally, we note that the above states can also be created by pumping

the crystal with the appropriate higher order mode as opposed to using fiber compressors

after the fact, since our Sorter can filter our any unwanted contributions to the biphoton

mode function. However, in many cases, pumping the crystal with a Gaussian mode is

preferable as it can result in more efficient production of the desired mode.
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CHAPTER V

SPIN-ORBIT INTERACTION FOR ELECTRONS AND PHOTONS

Introduction

As discussed in Chapter II, when an electromagnetic wave propagates in an inhomoge­

neous medium along a well-defined curvilinear trajectory, the evolution of its polarization

state is dependent upon the path taken by the particle. This phenomenon, which was first

predicted by Bortolotti [66] and explicitly calculated by Rytov [30, 67] for waves without

orbital angular momentum (OAM), is characterized by our equation (2.48d) in Chapter II

with me = °and A = 1:

<PB = -an. (5.1)

In (5.1), <PB is the (geometric) phase accumulated by a wave with well-defined helicity, a =

±1 is the spin angular momentum (SAM) quantum number (representing left or right circular

polarization), and n is the solid angle subtended by the momentum-space loop defined by

the trajectory. (5.1) was first derived by Vladimirsky [68] shortly after Rytov's work. Over

forty years later, prompted by the work of Berry on the general problem of geometric phase

in adiabatic quantum systems [29, 69], Chiao and Wu proposed an experiment to measure
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this effect of the trajectory on the polarization [70], which was subsequently carried out by

Tomita and Chiao [71.].

The pioneering work of Berry and the experimental confirmation of Tomita and Chiao

ushered in an explosion of interest in the geometric phase. Less that a year after the ex-

perimental work, Bialynicki-Birula and Bialynicka-Birula extended the result (5.1) to any

particle with spin propagating along a well-defined curvilinear trajectory (again without

OAM) [28], resulting in the expression

cI>B = -AO"O, (5.2)

1
where A is the absolute magnitude of the particle helicity such that A = 2" for electrons

and A = 1 for photons ((5.2), of course, is also a special case of our equation (2.48d), with

me = 0). That same year, Kitano, Yabuzaki, and Ogawa pointed out that geometric phase

manifests itself as a transverse image rotation for a light beam undergoing out-of-plane

mirror reflections [57]. This image rotation effect was subsequently studied more rigorously

by Segev, Solomon, and Yariv [58], and was connected with the Poincare sphere formalism by

Galvez and Holmes [56J, who also demonstrated for the first time that both the polarization

and image of the light beam are rotated through the same transverse angle by any sequence of

out-of-plane mirror reflections (see also [55]). This equivalence of the polarization and image

rotation for light induced by the geometric phase is implicit in our fundamental equation

(2.48d) for A = 1,
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(5.3)

as we showed in Chapter III (see (3.52)). Perhaps surprisingly, the connection between the

geometric phase, OAM, and transverse image rotation for light was not explicitly pointed

out until a few years ago by Bliokh [43], although the fact that an azimuthal rotation of an

LG; mode through an angle 0 is equivalent to multiplication by a phase factor e-imtO was

known previously [59].

Each of the aforementioned developments share a common characteristic: a particle

traveling along a curvilinear trajectory will accumulate a geometric phase proportional to

the solid angle 0 subtended by the trajectory in momentum space. However, Liberman

and Zel'dovich have shown that a and me-dependent phase shifts reminiscent of those given

in (5.3) still occur for photons propagating along a straight trajectory provided that the

propagation medium remains inhomogeneous, as is that case in a straight optical fiber [62].

They were also the first to propose both of these distinct phase shifts as the consequence of

a spin-orbit interaction (SOl) for photons (Dooghin et al. simultaneously provided the first

experimental evidence for this effect [72]). Subsequently to this, several authors have further

examined the connection between the geometric phase and the SOl for both electrons and

photons, d. [41-44,73-83] and references therein. However, the majority of these studies are

limited to transversely localized beams traveling along either a curved or refracted trajectory,

and study the equations of motion in the semiclassical "ray" picture (the exceptions to this

are [62, 73, 74], which however considered photons only). Because of this, a unified treatment
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of the spin-orbit interaction for electrons and photons in the "wave function" picture, in

which the full wave nature of each particle is taken into account, has not previously been

given.

In this Chapter we provide such a treatment, studying the dynamics of the SOl from

within a unified framework. We restrict our analysis to particle propagation in a straight

cylindrically symmetric waveguide, solving both the Dirac and Maxwell equations pertur­

batively for this geometry. Remarkably, we find in this case that the SOl is quantitatively

described by a single expression applying to either an electron or a photon. This leads to

the prediction of several rotational effects for both particle types, in which the particle's spin

and orbital degrees of freedom influence one another as it propagates down the waveguide.

Because previous studies have been predominantly restricted to the semicalssical "ray" pic­

ture, a majority of the aforementioned rotational effects, which can be described only via

the wave-function picture, were missed until our recent work on the subject [84]. As we

will show, these phenomena allow for the reversible transfer of entanglement between the

SAM and OAM degrees of freedom of two-particle states. The common origin of these ef­

fects in electrons and photons is a universal geometric phase associated with the interplay

between either particle's spin and OAM. This implies that the SOl occurs for any particle

with spin, and thereby exists independently of whether or not the particle has mass, charge,

or magnetic moment.
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Spin-Orbit Wave Equations

For each particle, we begin with its appropriate wave equation- Le., the Dirac equation

for electrons and Maxwell's equations for photons (Maxwell's equations are equivalent to the

photon wave equation as we showed in Appendix A). From this starting point, we then show

that the particle wave equation for a monoenergetic paraxial electron (photon) propagating

in an inhomogeneous, cylidrically symmetric potential (permittivity) may be expressed in

the form of a Schrodinger-type equation with a perturbation,

(5.4)

where IIIw is the particle wave function (which has energy nw), iIo is an exactly solvable

portion of the Hamiltonian, iI' is a small perturbation, and j3 is the propagation constant

such that the z-dependence of the state is IIIw ex ei
(3z.

Electron Case

It is instructive to approach the problem of the electron spin-orbit interaction from the

viewpoint of the Foldy-Wouthuysen representation of the Dirac equation, wherein the Dirac

Hamiltonian has the general property that the positive energy solutions are decoupled from

the negative energy solutions, so that we can describe the electron via a two-component

spinoL Consider an electron with charge -e moving in the presence of an electromagnetic

field of nonrelativistic energy, with electric and magnetic fields E and B and scalar and vector

potentials V and A, respectively. In the presence of these fields and the corresponding
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potentials, to order (~) 4, the Dirac Hamiltonian in the Foldy-Wouthuysen representation

takes the form [85]

A 2 1(A e)2 {I (p2 ) 2 efi2H4? = me + - P - -A - eV - -- -- - --'\7 . E
2m e 2me2 2m 8m2e2

iefi A e A e A }
---8· ('\7 x E) - --8· (E x p) + -8· B

4m2e2 2m2e2 me

(5.5)

where S == ~a is the spin vector operator of 2 x 2 Pauli matrices, and Gaussian units have

been employed. The equation H4? I'll) = E I'll) (or equivalently H4? I'll) = nw I'll)) contains

all of the information of the Dirac equation (subject to the aforementioned constraints), and

is therefore the correct wave equation for the electron. Note that we have not yet assumed

anything about cylindrical symmetry and!or the specific form of the electromagnetic fields;

this Hamiltonian is still quite general. We now make the assumption that the electromagnetic

field is electrostatic in the laboratory frame, and assume also that the electron is traveling

at a nonrelativistic speed with respect to the laboratory frame. Under these assumptions,

we may take B and A equal to zero, and '\7 x E = 0, so that after multiplying both sides by

. 2m
the quantity !i:i"' (5.5) becomes

A _ 2m ~ 2 2m { A A A}
H = !i:i"H4? = -'\7 -!i:i"eV - HReI + HDar + Hso

A fi2 ('\72) 2 A e A e A
where HReI = 2"" - ,HDar = --42'\7· E, and Hso = -~8. (E x p), and where

e 2m me n me

p = -ifi'\7 has been used, while the constant rest mass term me2 has also been dropped.
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Note that the first term in the curly brackets arises from the relativistic mass increase,

and is independent of the form of the electric field. In the canonical case of a spherically

1
A

. r
symmetnc Coulomb field (hydrogen atom), V = - and E = -\7V = 2' so that the second

r r

term is known as the Darwin term, while the last term gives rise to the atomic spin-orbit

interaction. Together these three terms account for all of the spectral phenomena of the

hydrogen atom to order (~) 4. The spin-spin interaction between the spin magnetic moments

of the proton and electron and the quantum electrodynamic Lamb shift, which are both

higher order effects, are the only well-known atomic interactions for hydrogen not described

by the Hamiltonian in (5.5).

Up to this point, we have yet to specify anything about E. However, we now assume a

translationally invariant (in the z direction), cylindrically symmetric potential V (p), so that

1 A

E = - \7V (p) = -8pV (p) P= --8pV (p) fi. Given this, HDar becomes
p

(5.7a)

(5.7b)

where (5.7b) follows from (5.7a) since the partial derivative acts as an operator quantity,

while Hso becomes

A e 1 A

Hso =~- (8pV (p)) S· (fix p)
It me p

(5.8)
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and HRel is unchanged. We note here that for a spherically symmetric atomic potential this

spin-orbit term has the same form, but with the replacement p --+ r.

The Hamiltonian H == ~rr; Hif> in (5.6) obeys the wave equation

h 2m
H'If = !ifE'If,

which may be more explicitly written as

(5.9)

(5.10)

2 2m 2 • .
where k (p) == !if (E + eV (p)), and the operator V' has been decomposed mto Its trans-

verse and longitudinal parts V'~ and Oz2 in light of the cylindrical symmetry of the potential.

Because of this translational invariance in z, for a given energy Eo = 1U.Jo the solutions to

the full wave equation (5.10) must take the form 'If = 'If (p, ¢) ei (f3z -!jp.t). Substituting this

form into (5.10) then yields

[
2 2] {h h h} 2V'r + k (p) 'If + H Rel + H Dar + Hso 'If = f3 'If,

which is an eigenvalue equation for f32.

(5.11)

We would like to treat the terms in curly brackets as a perturbation of the unperturbed

problem

(5.12)
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where !Io == (V'~ + k2 (p)). The general solutions to this unperturbed, separable, "transverse

Pauli equation" take the general form

(5.13)

where N is a nor(m~:a)tion constant, "plmel (p) is a radial wave function determined by

k (p), and eu == is a two component spinor composed of Kronecker delta func­

6u -

tions such that 6u+ = 1 if (J = +1 and 6u+ = 0 if (J = -1, etc. In expressing these

wave functions, we have chosen the following complete set of commuting operators, {Eo ==
A A h

ihot , pz == -ihoz, Lz == -iho", , Sz == '20"z}' which have the following respective eigenval-

ues, {hwo, h{3o, hme, ~(J}.

We now express the potential V (p) in terms of a normalized potential energy U (p) ==
-eV(p). . . -eV (0)
------,2:::--:--' so that wIthout loss of generahty we may wnte U (p) = 2 + ~X (p), where

me me

~ == - (U (0) - U (a)) = eV (0) - 2
eV

(a) and a is the effective radius of the potential.
me

In order to guarantee transversely bound states, we assume that V (p) is a monotonically

decreasing function that becomes constant for p ;:::: a, such that X (p) is zero at the origin

and increases monotonically to one at radius a, becoming constant thereafter. This results

in the perturbative terms !IDar and !Iso taking the respective forms

(5.14)

and
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(5.15)

We now focus on the "vectorial" portion of Hso, namely the quantity S. (fi x p) =

S· [(xx +YY) x pl. Since carrying out this the cross product (xx +YY) x P explicitly yields

(yx - xy) pz + (xPy - YPx) z= (yx - xy) pz +Lzz, after the dot product with the spin vector

we have

S· (fix p) = szL + (YSx - xSy) Pz,

n2
A

= 2 (o-zt'z - ip (sin ¢o-x - cos ¢o-y) Oz) ,

(5.16a)

(5.16b)

(5.17)

where the cylindrical coordinate definitions x = p cos ¢ and y = p sin ¢ have been used in

A L
the last line, along with the dimensionless orbital angular momentum operator t'z == ;. In

matrix form then, (5.15) and (5.16) give

A ~ 1 (t'z pe-i~oz ) .
Hso = -2p (opX (p)) . ..

-petr/Joz -t'z

Furthermore, note that the matrix in (5.17) may be decomposed in the following way,

(5.18a)

(5.18b)
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where i± and fr± are the respective raising and lowering operators for the electronic states

Ime (7), which have well-defined values for spin and orbital angular momentum, such that

(5.19a)

(5.19b)

(5.20)

It is most convenient to express Hso in terms of these operators:

A ~1 (A (A A))Hso = -2p (8p X (p)) frz£z + P fr+L - fr_£+ 8z .

A 11,2 (yr2) 2 A A
We stress here that (5.11) with HReI = c2 2m and HDar and Hso given by (5.14) and

(5.18b) is completely equivalent to (5.5) with a cylindrically symmetric electrostatic potential

v (p), so that in this sense (5.11) is "exact" (to order (~) 4). Furthermore, for a sufficiently

weakly varying potential V (p), we have ~ « 1, so that H' = {HfW1 + HDar + Hso } may

be treated as a small perturbation to the unperturbed Hamiltonian Ho in (5.12). In this

case, the wave equation (5.11) assumes the form (5.4) of a Schrodinger-type equation with

a perturbation, as discussed at the beginning of this section.

Photon Case

We now consider a paraxial photon propagating in a non-magnetic transparent medium

with constant permeability J.Lo and spatially inhomogeneous permitivity E (r). For rna-

noenergetic fields E(r,t) = E(r)e-iwt , H(r,t) = H(r)e-iwt , D(r,t) = E(r)E(r,t), and

B (r, t) = J.LoH (r, t), Maxwell's equations take the well-known form [60]



124

\7·D=O ::::} dr) \7. E + \7dr)' E = 0, (5.21a)

\7·B=O ::::} \7. H = 0, (5.21b)

\7 x E = -8t B ::::} \7 x E = iWJ.loH, (5.21c)

\7 x H = 8t D ::::} \7 x H = -iwdr) E, (5.21d)

where the identity \7 . E(r) E = E(r) \7 . E + \7E (r) . E has been used in 5.21a. In order to

obtain an uncoupled Helmholtz-like equation for E, we follow [63] and take the curl of both

sides of (5.21c) while using the vector identity \7 x \7 x E = \7 (\7 . E) - \72E, substituting

1
for \7 x H using (5.21d), and employing \7 . E = - E(r) \7dr) . E = - \7 In E(r) . E using

(5.21a), which yields

(5.22)

By a similar calculation [63], one may also obtain a second-order equation for H: take the

curl of (5.21d), use the vector identity \7 x E(r) E = E(r) \7 x E + \7E (r) x E, and substitute

for \7 x E using (5.21c) and \7 . H using (5.21d), which yields

(5.23)

We will henceforth focus on equation (5.22), for which the electric field E and magnetic field

H are uncoupled, since H may be determined through (5.23) once E is known.
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Specializing now to the case of a cylindrically symmetric medium, we employ cylindrical

coordinates (p, ¢, z), while constraining the permitivity E (r) ---+ E (p) to be a function of

p only and therefore translationally invariant with respect to the z axis. Imposing this

condition along with the monoenergetic field assumption constrains the z and t dependence

of the fields such that E assumes traveling wave form

E = [ET (p, ¢) + E z (p, ¢) z] ei«(3z-wt). (5.24)

where we have also split E up into transverse and longitudinal parts ET (p, ¢) and E z (p, ¢) z

in order to exploit the cylindrical symmetry of the medium. Inserting (5.24) into (5.22) then

yields the following two equations involving the transverse and longitudinal fields [63],

[\7~ - ,82 + w2dp) J-lo] ET = - \7T [\7T In E(p) . ET],

[\7~ - ,82 + W2E(p) J-lo] E z = -i,8 [\7T InE (p) . ET ] ,

(5.25a)

(5.25b)

where the relation \7[\7lndp)·E(p,¢)] = \7T[\7TlnE(p)·E] = \7T[\7Tlndp)·ETJ +

i,8 [\7TIn E(p) . ET ] has been used, with \7T == \7 - 8zz and \7~ == \72 - 8;.

Note that the exact equation (5.25a) involves ET alone, while in (5.25b) ET and E z

are coupled. (5.25a) may therefore be used to generate complete and exact solutions to

Maxwell's equations, since a solution of (5.25a) for the transverse field ET may be substituted

into (5.25b) to generate the complete filed E, which may then be substituted into (5.23) to
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generate H. In this way, the problem of finding the electromagnetic fields E and H is reduced

to solving (5.25a) for the transverse electric field.

Since Maxwell's equations constitute the proper wave equation for the photon [26, 27],

we now replace the transverse field vector E r with the suggestive wave function notation

w, while defining k2 (p) == W
2

E (p) f-lo and fl'w == 'lr ['lr InE (p) . E r ], thereby arriving at a

compact expression for (5.25a) in the form of a two-component Schrooinger-type equation:

(5.26)

This eigenvalue equation for f3 is similar in form to the analogous electron equation (5.11).

Similarly to the electron case, we would like to treat the iI' term as a perturbation of

the unperturbed problem

(5.27)

where iIo == ('\7~ + k 2 (p)). The general solutions to this unperturbed, separable equation

take a general form similar to (5.13)

(5.28)

However, for the photon case eO' == ~ (x + io"5r) is a unit vector denoting the photon's

circular polarization (helicity) state with respect to the z axis, as determined by the SAM

quantum number a = ± 1.



127

It is worth noting here that although (5.26) generates complete and exact solutions to

Maxwell's equations for an inhomogeneous permitivity E (p), for the limiting special case of

a homogeneous permitivity, E (p) ---t E, this statement no longer holds. This deficiency stems

from (5.22) and (5.23), from which (5.26) was derived. These equations, which become

the homogeneous vector Helmholtz equations under the replacement E (r) ---t E, are still

necessary but are no longer sufficient conditions for the fields E and H to be solutions to

Maxwell's equations (5.21), as is well known. In order to obtain a complete description of

the solutions to Maxwell's equations in this homogeneous limit we must therefore use an

alternative approach.

In Appendix A, we develop this alternative treatment for free-space fields by applying

(5.21) to the solutions of the homogeneous vector Helmholtz equations, (i.e., (5.22) and

(5.23) with the terms containing a permitivity gradient V'lnt(r) set to zero). Armed with

the proper free-space solutions for the monoenergetic fields, we then define and employ the

paraxial limit, which has not been assumed up to this point so that the above equations

(5.22)-(5.26) apply even to non-paraxial monoenergetic fields. We find that for beams

propagating paraxially in free space, Maxwell's equations (5.21) may be reduced to a single

equation for the transverse electric field (see (A.24)),

A 2
¢:} HoW = (J W,

(5.29a)

(5.29b)

where k 2 == W
2

E/--lO, and the photon wave function notation has been used in (5.29b). Since
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(5.26) reduces to (5.29b) in the free-space limit where iI''I!w ~ 0 and k (p) ~ k, we conclude

that (5.26) does indeed provide a complete description of the free-space electromagnetic field

in the paraxial limit.

Our present goal is to express iI' of (5.26) in such a way that the photonic spin-orbit

interaction is manifest. With this in view, we note that \IT In E(p) = Bp In E(p) Pso that iI'

simplifies to

= [(\ITI (p)) + I (p) \IT] Ep

(5.30)

where I (p) == BplnE (p), and where Ep (p,</J) == ET · Pis the radial component of the field.

In the circularly polarized basis, we have the results \IT = e+ \1+ + e_ \I_with \I± ==

~e'fit/> (Bp=F ~Bt/>), and Ep = ~ (e+it/> E+ + e-it/>E_) with E± == E . e~. Substituting

these relations into the right-hand side of (5.30), using \I±I (p) = ~e'fit/> (BpI (p)), and

employing the column vector notation Er ~ E+e+ + Ke_ 0= ( :: ) readily yields the

first line of the following succession of expressions:
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fIlET =

(5.31a)

[

g~ + he-i¢£ e+i¢. z

ge+2i¢ _ he+i¢£ze+i¢

A -2i¢ + h -i¢/i _i¢]ge e l:-ze

9 - he+i¢£ze-i¢
(5.31b)

(5.31c)

(5.31d)

The spin-orbit interaction is explicitly manifest in the ho-z£z term of (5.31d); the steps

(5.31a)-(5.31c) are presented to clarify its derivation: In (5.31b), we have identified the

(dimensionless) GAM z-component operator (-i8¢) == £z in (5.31a) while adopting the

shorthand notation



A 1
9 == 2" [(BpI (p)) + I (p) Bp],

h == ~I (p)
2 p
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(5.32a)

(5.32b)

where 9 has a "hat" to emphasize its character as a differential operator. In (5.31c), we have

written the resulting expression (5.31b) in terms of the following simple matrix,

Q== (5.33)

with ax and az being the Pauli matrices, and

(5.34)

Also in (5.31c), iI' has been explicitly split up into its diagonal and anti-diagonal parts, so

that the first term in square brackets (which we will denote as iIb) is purely diagonal while,

the second term (iI~D) is anti-diagonal. Finally, in order to make the Sal explicitly manifest

and azN = -Naz in order to simplify the matrix products in the diagonal and anti-diagonal

terms of (5.31c),

(5.35)
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Defining 9+ == 9+ h = ~ [(8pI (p)) + I (p) 8p + I ~)] then yields the final result given in

(5.31d).

The perturbation Hamiltonian (5.31d) turns out to have a very similar form as compared

to the electron Hamiltonian. To see this, we assume that the permitivity E (p) is a mono-

tonically decreasing function that becomes constant for p ~ a, where a is again an effective

radius. Given these constraints, E (p) can without loss of generality be written in the form

E(p) == Eon~(l- ~X(p)). (5.36)

which is similar in form to the normalized potential energy in the electron case. In (5.36):

E (0) - E (a ) n~ - n2 2 2
~ == ( ) = 2 a, where E(0) == Eon (0) and E(a) == Eon (a) are the respective

E 0 no

values of the permitivity at p = 0 and p = a, with no and na denoting the refractive index

at those points. Also in (5.36), X (p) is zero at the origin and increases monotonically to one

at radius a, becoming constant thereafter. Using the above form of the permitivity gives

(5.37)

(5.38)

so that

A -1 ~ [( 2 ) 1 (8p X (p))2]
9+ = 1- ~X (p) 2 8p X (p) + (8p X (p)) 8p + P(8pX (p)) +~1- ~X (p) ,

where (apt (p)) ~ I _ ~~ (p)" [(a;x (p)) +" I(~~~)(~)] has been used. Suhslitutiou of

(5.38) and (5.37) into (5.31d) then yields the following form for the perturbation term iI':
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A -1 6.
H' = ------,-....,...

1-6.X(P) 2

x [(B:X (p)) + (BpX (p)) Bp+ ~ (BpX (p)) + ~ (BpX (p)) &i. + '" I(~~~);:)] (I +N)
(5.39a)

In (5.39b),

A _ -1 6. (( 2 ) 1)HDar = 1 _ 6.X (p) 2 8p X (p) + (8pX (p)) 8p + P(8pX (p)) (1 + N)

is analogous to the Darwin term (5.14) in the electron case, while

A -1 6. 1 ~

Hso ~ 6. () 2 - (8pX (p)) az£z (1 + N)
1- X P P

is analogous to the electronic spin orbit term (5.17), and the final term

appears only in the photon case.

(5.39b)

(5.40)

(5.41)

(5.42)

The portion o-ziz(1 + N) of the photon spin-orbit Hamiltonian Hso may be decomposed

in a form similar to (5.18):
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(5.43a)

(5.43b)

where &~ and ~ are the respective raising and lowering operators for the photonic states

Ime (5), which have well-defined values for the photonic spin and orbital angular momentum

such that

&~~ Ime ±) = o.

(5.44a)

(5.44b)

(i.e., a-~ and ~ raise and lower the SAM and OAM by a quantity of 2n). As in the electron

case, it is most convenient to express Hso in terms of these operators:

(5.45)

We stress here that (5.26) with il' given by (5.39b) is completely equivalent to Maxwell's

equations (5.21) in the sense that (5.26) generates complete and exact solutions to (5.21) with

a cylindrically symmetric permitivity E (p). Furthermore, for a sufficiently weakly varying

permitivity E (p), we have 6. « 1, analogously to the aforementioned case of a weakly

varying potential for electrons. In this case we may treat H' as a small perturbation to the

unperturbed Hamiltonian Ho in (5.27), so that the photon wave equation (5.26) assumes the
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form (5.4), as is also the case for electrons. Finally, we note that a Hamiltonian reminiscent of

(5.39) and including the spin-orbit term Hso has been given previously in [74]. However, in

that work the Hamiltonian was only derived in the non-exact, weakly-guiding approximation,

~ 1
with the result that the H y term and the ~ () prefactor in the exact equation (5.39a)

1- X P

are absent in the approximate treatment [74].

Unperturbed Wave Functions

In the last two sections we showed that both the electron and photon wave equations

assume the form

(5.46)

for an electron (photon) propagating in a cylindrically symmetric potential (permitivity), cf.

(5.11) and (5.26). The associated unperturbed equation has the form

(5.47)

(5.48)

for both particles, d. (5.12) and (5.27). Substituting the general form for the unperturbed

electron solutions (5.13) (or the unperturbed photon solutions (5.28)) into (5.47) yields the

"radial" equation

~ _ (2 1m2
2 ) 2R7/Jjmel (p) = ap+ pap - {}2 + k (p) 7/J\mtl (p) = (307/Jlmel (p) ,

~ 2 1
where R has been introduced as the "radial" operator, and '\IT = ap + -ap has been used.

p
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Since the equation (5.48) may be put into Sturm Liouville form, its eigenfunctions are or­

thonormal with real eigenvalues (135)n with n = 0,1,2, ... , such that the nth eigenfunc­

tion 1Pnlm£1 (p) has n zeros in the interval °< p < 00. As a result of this, n plays the

role of a "radial" quantum number, analogously to that of the spherically symmetric Hy­

drogenic atom. We henceforth choose to express our analysis in terms of the following

complete set of commuting operators, {wo, il, £z, o-z}, which are associated with the follow­

ing respective quantum numbers, {wo, n, me, a}. For a given particle frequency (energy)

Wo, the unperturbed state of the electron or photon is completely determined by the three

discrete quantum numbers n, me, a. In what follows we therefore adopt the ket notation

Inmea) == Nn lm£l1Pnlm£1 (p) eim£<peaei([3oz-wt) in order to denote an unperturbed monoenergetic

particle state, where we have made explicit the dependence of the normalization factor N

and the radial wave function 1P (p) on the radial quantum number n.

Perturbation Hamiltonians

In preparation for our perturbative treatment, we now reexpress the perturbation Hamil­

tonian fI' for both particles in a form amenable to the application of perturbation theory. As

we will show in the next section, it is convenient to separate fI' into its respective diagonal

and anti-diagonal parts:

For electrons then, we have

fI' = fI(D) + fI(AD). (5.49)



I
I

where

and with

~ (D) ~ ~ ~ (D)
H = HRel + HDar + HSO ,

H(AD) _ iI:(AD)
- SO ,
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(5.50a)

(5.50b)

(5.51a)

(5.51b)

(5.52a)

(5.52b)

being the respective diagonal and anti-diagonal parts of the spin-orbit operator Hso (see

(5.6), (5.14), and (5.18)-(5.20)).

For photons, the Darwin-like term HDar, spin-orbit term Hso , and photon term H"I each

have the respective diagonal and anti-diagonal parts (see (5.39)-(5.42) and (5.45)),
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where N = o-~i:.. + 0-:.4 has been used, so that

fI{D) = fI{D) + fI{D) + i{{D)
Dar SO 'Y'

and

fI{AD) = fI{AD) + fI{AD) + fI{AD)
Dar SO 'Y'

(5.53a)

(5.53b)

(5.53c)

(5.53d)

(5.53e)

(5.53f)

(5.54)

(5.55)

Taking one more step, we further separate out the spin-orbit contribution from the diag-

onal Hamiltonians fI{D) for both particles, so that

(5.56)

where fI6D) = fIRel + fIDar for electrons and fI6D) = fIb~~ + fI~D) for photons, while fI~g)

for both particles is given above in (5.52a) and (5.53b), respectively. Our desired form for
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the perturbation Hamiltonian is thence expressed as the sum of a diagonal "base" term, a

diagonal spin-orbit term, and an anti-diagonal term:

(5.57)

Although this form for fI' is still exact, it is readily amenable to perturbative techniques in

the regime where .6. « 1.

Perturbative Treatment

For both electrons and photons, the condition .6. « 1 is the criterion for the waveguide to

be weakly guiding, from which it follows that the guided modes are nearly paraxial. For the

remainder of this section, we will henceforth assume that .6. « 1 holds so that we may apply

perturbation theory to the wave electron and photons wave equations, which each have the

1
form (5.4). In this weakly guiding regime, the photon prefactors 1 _ .6.X (p) in equations

(5.53a)-(5.53f) are approximately equal to unity (to first order in .6.), and the photon terms

fI~D) and fI~AD), which are second order in .6., are approximately zero to the same order.

The photon Hamiltonian fI' = fI~D) + fI~g) + fI{AD) thereby simplifies somewhat under the

approximation .6. -t:: 1 such that fI{D) ~ fI{D) and fI{AD) ~ fI{AD) + fI(AD) with"" , a Dar Dar so'

(5.58a)

(5.58b)
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(5.58c)

(5.58d)

In preparation for the application of perturbation theory, we now proceed to explicitly

evaluate the matrix elements of the perturbation operator H' in the monoenergetic unper-

t urbed states I\lJ 0) = In me a) for both particles.

Electron Case

We begin by focusing on HRel (see (5.51a)) and noting that the unperturbed wave equa-

tion (5.12) may be equivalently expressed as

2 2m (\1 'lI0 = -!if E + eV (p)) 'lI0 (5.59)

where E = fiJJJ, and the replacement (35 ---t -8; has been made. Employing (5.59) and the

previously defined ket notation 'lI0 = In me a) we find that the matrix elements of HRel are

/ A ) (' , 'I A I ) Eg (' , 'I ( eV (p)) 2 I )\HRel = n mea HReI nme a = 11,2c2 n mea 1 + --e;- nme a . (5.60)

Letting £0 == Eo so that eV (p) = ~ eV (p) = ~ (ev (0) - ~X (p)), and fixing the
mc2 Eo £0 mc2 £0 mc2

arbitrary "zero-point" potential according to V (0) = 0, we find that

(n' m~ a'i HRe1ln me a) = 11,~~2 (n' m~ a'i (1 - ~ X (p)) 2 1n me a) . (5.61)
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Since the inner product denotes integration in the transverse p and ¢J variables, and the

integrand depends only on p, we find that the explicit form of the inner product in (5.61) is

( ~ ) E5 ( ~JHRel = fj,2c2 on'n - 411" £0 pdpX (p) Nn'lmtINnlmtl1Pn'lmtl (p) 1Pnlmtl (p)

+ 2,,- (~) , Jpdpx' (p) Nn'lm,INnlmd"'n'lm,1 (p) "'nlm,1 (p)) om;m,ou'"'

We now proceed to evaluate (HDar ) (see (5.51b)):

(5.62a)

(5.62b)

(ifD~) ~ - ~ ({n'm;a'J (a;X(p)) Inm,a)

+ {n' m; "'I (a,X (p)) apIn m, a) + {n' m!, "'I ~ (a,X (p)) Inm, a)). (5.63a)

~ -t>~Nn'lm'INnlmd (J pdp (a;X(p)) "'n'lm,1 (p) "'nlmd (p)

+ Jdp [p (apX (p)) "'n' Imda,"'nlm,I(p) + (a,x (p)) "''-Imd (p) "'nlm,1 (p) ] ) O";'m,au'",

(5.63b)

(5.63c)

(5.63d)

where integration by parts has been performed on the first term in (5.63b), which cancels the

remaining terms, leaving (5.63c). This result leads us to define a simpler effective Darwin

Hamiltonian term iIg:,:),
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(5.64)

whose inner product yields the correct result (5.63d):

We now evaluate the matrix elements of the diagonal part iI~g) of the spin-orbit term

iIso (see (5.52a)):

( ~ (D») ~ (' , '11 ( ()) ~ ~ 1 )Hso = -"2 n mea p OpX p azPz nme a ,

= -~7rNn'lmeINnlmelame ([ dp (OpX (p)) 'l/Jn'lmel (p) 'l/Jnlmel (P)) 6m~mA"(n

== -altF~~~~eI6m~mATllT'

where It == 1::1 is designated the absolute sign of the OAM quantum number me·

Finally, we evaluate the matrix elements of the the anti-diagonal term iI(AD)

(5.66a)

(5.66b)

(5.66c)

of the

perturbation operator iI' (see (5.18b)), which involves a calculation similar to that of (5.66):

(5.67a)

x (/ pdp (opX (p)) 'l/Jn'lmel (p) 'l/Jnlmel (p)) (6m~me-16lT'lT+l - 6m~me+l6lT'lT-l) ,

(5.67b)
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(5.67c)

By (5.62b), (5.63d), (5.66c), and (5.67c), the matrix elements of the complete Hamiltonian

fJ' = fJciD) + fJ~g) + fJ(AD) in the unperturbed electronic states may therefore be written as

where P~?~lmel == P~~~el + P~~i~e" It is instructive to express the matrix elements of the

inner product (5.68) (for arbitrary nand n') in explicit matrix form:

(n' m~ a'i fJ' In me a) =

InO+) InO-) In -1 +) In 1-) In 1+) In-1-)

In' 0 +) (D) 0 0 0 'p(AD) 0Pn'nO+ -~ n'n1

In' 0-) 0 (D) 0 0 0 'p(AD)
Pn'nO- ~ n'n1

In' -1 +) 0 0 (D) 0 0 0Pn'n -1+
(5.69)

In'l -) 0 0 0 (D) 0 0P n'n1-

In'l +) -p(AD) 0 0 0 (D) 0~ n'n1 P n'nl+

In' -1-) 0 'F(AD) 0 0 0 (D)
-~ n'n1 Pn'n -1-

From (5.68) and (5.69) we see that the matrix

(n' m~ a'i fJ' In me a) is diagonal within each subspace block labeled by Imel (i.e., each sub-

space spanned by the vectors {In +lmel +) ,In -Imel -) ,In +Imel -) ,In -\mel +)}).
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Photon Case

For the photon case, the four terms (5.58) which contribute to iJ' are similar to the

electron terms above, so that their matrix elements are readily evaluated by following (5.63),

(5.66), and (5.67):

(5.70)

h F (D) - 2F(Dar) d h h ffi . F(Dar) d F(SO) " (5 63d)were I I I = I I I' an were t e coe Clents I I I an I I I are gIven III .n n ml n n ml n n ml n n ml

and (5.66c). Expressing the matrix elements of the inner product (5.70) (for arbitrary nand

n') in explicit matrix form then yields
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(n' m~ a'i iI' In me a) =

InO+) InO-) In -1 +) In 1-) In 1+) In-1-) In -2 +)

In' 0 +) (D) 0 0 0 0 0 (2)
Fn, nO + -Fn' n2

In' 0-) 0 (D) 0 0 0 0 0Fn,nO -

In' -1 +) 0 0 (D) (1) 0 0 0Fn1n -1+ -Fn1n1

In'l-) 0 0 (1) (D) 0 0 0-Fn'n1 Fn,n1 -

In' 1+) 0 0 0 0 (D) 0 0Fn'n 1+

In'-l-) 0 0 0 0 0
(D)

0Fn'n -1-

In'-2+) (2) 0 0 0 0 0 (D)-Fn1n2 Fn1n2 -

In' 2-) 0 (2)
0 0 0 0 0-Fn1n2

In'2 +) 0 0 0 0 0 0 0

In' -2-) 0 0 0 0 0 0 0

(5.71)

(1) _ (0) (SO) (2) _ (0) (SO)
where Fnl n1 = Fnl n1 + Fnl n1 and Fnl n1 = 2Fnln1 + Fnl n1· In contrast to the electron case,

we see from (5.71) that the matrix (n' m~ a'i iI' In me a) is not diagonal within the Imel = 1

subspace block. However, the Imel = 1 subspace proves to be the sole exception, as it follows

from inspection of (5.70) that (n m£ al iI' In me a) is diagonal within all other Imel-dependent

subspace blocks. As this property proves to be important for the application of perturbation
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theory, we exclude for photons the Imel = 1 block from consideration for the remainder of

this chapter.

Perturbation Theory

Armed with (5.69) and (5.71), we are now in a position to apply perturbation theory to

both the electron and photon cases. We henceforth assume that the eigenvalues (135) nlmel of

the monoenergetic states In me a) are sufficiently distinct such that I(n' m~ a'i iI' In me a) I «

(135)nlmel - (,eg)n'lm~1 for all values of n, n', Imel, and Im~1 (this assumption, which we have

shown to be true for the specific case where X (p) is a step function, may reasonably be ex-

pected to hold for arbitrary X (p)). According to first-order quantum-mechanical degenerate

perturbation theory [86], under this assumption all off-diagonal terms which lie outside the

Ime I-dependent subspace blocks may be neglected to first order in ~ when calculating the

first-order shift in the quantity ,eg. Specifically, this means that to first order in ~, the final

term in (5.68) is negligible for electrons, while for photons the last two lines of (5,70) may

be neglected (with the sole exception of the off-diagonal terms in the the photonic Imel = 1

block, which we exclude from our analysis as previously stated), Therefore, for the purposes

of first-order perturbation theory the matrix elements (n' m~ a'i iI' In me a) take the same

basic diagonal form for both particles,

(5.72)

h P (O) - p(Rel) p(Dar) f 1 d F(O) - 2F(Dar) f h h'lwere n'nlmel = n'nlmel + n'n[mel or e ectrons an n'nlmel = n'nlmel or p otons, w 1 e
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F~~~~el has the same form for both particles. From (5.72), one may extract the effective

Hamiltonian for calculating the shifts to the quantity /35, to first order in ~:

(5.73)

for electrons, and

(5.74)

for photons.

Since the effective Hamiltonians (5.73) and (5.74) are completely diagonal in the Inme(T)

basis (with the exception of the Imel = 1 block for photons) first-order degenerate pertur-

bation theory [86] gives the following formula for the first-order shifts 8 (/32) to the quantity

/35, which is valid for both particles:

_ F(D) _ F(SO)
- nnlmel (Tp nnlmel'

(5.75a)

(5.75b)

where (5.72) has been used. Substituting the definitions of F~~mel and F~~~el into (5.75b)

(or equivalently, employing (5.73) and (5.74)) thereby yields an explicit expression for the

shifts to /35, to first order in ~:
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for electrons, and

J ({32) =~1fN~lmtl Jpdp (opX (p)) 7/Jnlmtl (p) op7/Jnlmtl (p)

- o-me~1fN~lmtlJdp (OpX (p)) 7/J;lmtl (p)

(5.76)

(5.77)

for photons. It is remarkable that the expressions for the two particles are nearly identical,

with the exceptions of an extra term resulting from the relativistic mass increase of the

massive electron, and a factor of two difference between the electron and photon "Darwin"

terms.

Spin-Orbit Interaction

The first two terms of the electronic Hamiltonian (5.73) and the first term of the photonic

Hamiltonian (5.74) each have matrix elements which are proportional to the identity matrix

within each Imel-dependent subspace block, as may be verified by inspection of the F~~lmtl

term of (5.72), which depends only upon the absolute value Imel of the OAM quantum

number. As a result of this, the degeneracy in the states In me 0-) with respect to the SAM
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quantum number (J" and the sign /.l == 1:;1 of the OAM quantum number mt is not lifted by

these terms, so that they do not contribute to the spin-orbit splitting of /35. Since we are

interested primarily in spin-orbit effects, we henceforth neglect the contributions due to these

non spin-orbit terms. This leads to a simple form for the effective Hamiltonian governing

the spin-orbit interaction for both particles,

and a correspondingly simple form for the first-order shifts 0 (/32),

o(/32) = / iI(Eff)) = -(J" F(SO)
\ so /.l nnJmtl'

= -(J"mtLl7fN;lmtl Jdp(apX(p))1/J~lmtl (p).

(5.78)

(5.79a)

(5.79b)

It is remarkable that the effective spin-orbit Hamiltonian iI~~ff) and therefore also the ex-

pression for the first-order spin-orbit shifts 0 (/32) are identical in form for both electrons

and photons.

Spin-Orbit Correction to the Propagation Constant

So far we have calculated the first-order corrections to the square of the unperturbed

propagation constant, 0 (/32). However, as can be seen from (5.13) and (5.28), it is the first

power of /30 which appears in the phase of the electron and photon wave functions. We are

therefore actually interested in the correction to first power of /30, which we denote as 0/3.

To extract this quantity from (5.79), we write the first-order equation /31 = /30 + 0/3 (where
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f3I contains the first-order corrections to (30), square both sides of this relation, neglect the

term second order in 8f3, and rearrange which yields f3~ - f3g ~ 2f308f3. Since by definition

we also have f3~ - f3g == 8 (f32) , we conclude that

~f3 = 8 (f32)
u 2f30 . (5.80)

From (5.79), we then conclude that the first-order corrections 8f3 to the unperturbed prop-

agation constant f30 are given by

(5.81)

We conclude that the propagation constant f30 is split by the spin-orbit interaction such that

the correction 8f3 is negative when the quantity O"me is positive, and positive when O"me is

negative. Note however that f30 is related to the particle's unperturbed phase velocity v~o)

via v~o) == ~, so that the effect of the spin-orbit interaction on v~o) is to shift it according to

_ (0) _ ~ _ ~
vp - vp + 8vp - f30 f3'5 8f3, (5.82)

which is valid to first-order in .6.. Noting also that the signs of the SAM and GAM quantum

numbers 0" and me describe the orientation of their associated spin and orbital angular

momentum vectors as parallel or anti-parallel with respect to the quantization axis, we

arrive at a more physical interpretation for the cylindrical spin-orbit interaction: the phase

velocity shifts upwards when the SAM and GAM vectors are oriented parallel with respect to

one another, while it experiences a downward shift when the SAM and GAM are oriented in
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an anti-parallel manner. In terms of the total angular momentum (TAM) quantum number

mi == me + (5, we find that states with higher absolute TAM Imil (Le., parallel states) shift

the phase velocity upwards, while states lower Imil (anti-parallel states), shift the phase

velocity downwards.

Spin and Orbital Rotation Effects

The effect of the cylindrical spin-orbit interaction (to first order in ~) on a monoenergetic

state In me (5) is to impart a phase factor of the form e-io-pI<i,61 to the state as it propagates

through a distance z down the waveguide:

(5.83)

7f Imel 2 J ) 2 )where 18,81 = ~ 2,80 Nnlmtl dp (8pX (p ) 7J1nlmtl (p , as can be seen from (5.13), (5.28), and

(5.81). Armed with, (5.83), we may derive the spin and orbital rotational effects mentioned

in the introduction to this chapter in a unified manner.

Orbit-Controlled Spin Rotation

We begin by noting that for both electrons and photons an arbitrary particle spin (po-

larization) state Ie) may be described by a complex superposition of the two basis spinors

(vectors) {e+, e_ }. Since such a superposition corresponds to the state of a two-level quan-

tum system, we may follow Bloch and parametrize the spin (polarization) state as follows:
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Figure 5.1. The Bloch sphere representing the complex spin-polarization superposition
state Ie). The angles (j and ¢ parameterizing the superposition in (5.84) correspond to the
spherical polar angles of the Bloch vector, shown as the bold red arrow. The dashed red
arrow is the projection of the Bloch vector into the azimuthal plane. The "north" and
"south" poles of the Bloch sphere correspond respectively to the spin-polarization states e+
and e_. The SOl causes a Bloch vector initially oriented at angles (j and ¢ to precess in the
azimuthal (¢) direction, thereby tracing out the path given by the solid blue line. In the

- 1r - 1r
special case illustrated, e= '4 and ¢ = '4. See text for further discussion.

(5.84)

where (j and ¢ may be represented geometrically as the spherical polar angles of the so-called

"Bloch vector", which uniquely determine a point on the spin-polarization Bloch sphere (see

Fig. 5.1). In light of this, we consider an arbitrary spin-polarization superposition of the
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states In me 0"), such that the superposition state retains well-defined values of its OAM and

radial quantum numbers me and n, which by (5.13) and (5.28) may be written as

14>0 (mt, n)} "CDS (0 e-i~ Inmi +) + sin (0 e4 1nmt -).

According to (5.83), as the state (5.85) propagates a distance z down the waveguide,

each of the two components pick up a phase factor from the spin-orbit interaction, the sign

of which depends upon the sign of product 0"/1:

(5.86b)

The spin-polarization portion (in square brackets) of the propagating state (5.86b) has the

same general form as (5.84), however the azimuthal Bloch vector angle J in (5.84) is trans­

fDrmed by the SOl accDrding tD ~ ~ p, (1'$1 z + p,~). This implies that the SOl causes a

Bloch vector with initial spherical polar angles 0, J to precess in the azimuthal (¢) direction

with a precession rate of 1&,81 per unit z, with the direction of precession controlled by the

absolute sign JL of the OAM (see Fig. 5.1).

For electrons, this Bloch vector precession in the two-level state space corresponds to a

similar precession of the expectation value of the spin vector in three-dimensional real space:
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(s) = (Bx ) x+ (By) y+ (Bz ) Z, (5.87a)

~ h cos (~) sinm[cos (2IOfJI z + ,,¢;)X+ "sin (210fJl Z + "¢;)Y] + ~ cos (9)z

(5.87b)

As can be seen from (5.87b), the average spin vector tilts at angle °with respect to the

z axis and precesses around it with increasing z, such that the direction of precession is

controlled by the absolute sign f1 of the GAM, similarly to the Bloch vector. However, the

precession rate per unit z of the spin vector is 2/6f3/, which is twice that of the Bloch vector.

For photons, the polarization state may also be expressed directly in terms of the Cartesian

unit vectors x and y as an alternative to the Bloch vector representation:

~ _ 1 [. (0) i/l-(16,Blz+/l-~) + (0) -i/l-(16,8IZ+/l-~)] ~e - - sm - e cos - e x
y'2 2 2

i [. (0) i/l-(16,Blz+/l-~) (0) -i/l-(16,8IZ+/l-~)] ~- - sm - e - cos - e y.
y'2 2 2

(5.88)

It is instructive to consider the special case of an initial spin-polarization state in a

balanced superposition, such that °= i (although it is not necessary, we also set ¢ = a

without loss of generality). In this case, (5.87b) becomes

(s) = ~ [cos (216f31 z)x + f1 sin (216f31 z)y],

while (5.88) reduces to

(5.89)



154

a.) b.)
"-

+Sz
+

"-

+ +Sz
"--sz

"-- +Sx "-

"- -Sy! 1+Sy- -sx

1 "-

+Sy

!
"--sy

"--sz

Figure 5.2. (a) Representation of various electronic spin states: + and - stand for spin up
and spin down along the z axis (i.e., eigenstates of Bz with positive and negative eigenvalues),
-t and ~ for eigenstates of Bx with positive and negative eigenvalues, and i and 1 for
eigenstates of By with positive and negative eigenvalues. (b) The evolution of the expectation

value of the electron spin vector \ S) in real three-dimensional space due to the SOl, for
- 1r

the special case of a balanced superposition where e= 2"' The long black arrows represent

the x, y, z coordinate axes which correspond respectively to the spin states -t, i, and +,
while the red arrow represents the spin vector. The spin vector lies entirely in the x-y plane
and precesses around the z axis, alternating between eigenstates of Bx and By and thereby
tracing out the path given by the solid blue line.

e = cos (10,81 z)x + /Lsin (10,81 z)y. (5.90)

From (5.89), we see that under these conditions the electron spin expectation vector lies

entirely in the x-y plane and precesses around the z axis, as shown in Fig. 5.2. Similarly,
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Figure 5.3. (a) Representation of various photonic polarization states: Rand L stand for
right and left circular polarization, H and V for horizontal and vertical linear polarization,
and D and A for diagonal and anti-diagonal linear polarization. (b) The evolution of the
photon polarization vector Ie) on the polarization Bloch sphere due to the SOl, for the

- 7r
special case of a balanced superposition where () = 2' The long black arrows represent

coordinate axes which correspond to the respective polarization states D, V, and R, while
the red arrow represents the polarization Bloch vector. The Bloch vector lies entirely in the
equatorial plane of the Bloch sphere and precesses about its pole, alternating between states
of linear polarization in the x and y directions and thereby tracing out the path given by
the solid blue line.

while from (5.90), the photon polarization Bloch vector lies entirely in the "equatorial"

plane and precesses around the "polar" axis of the Bloch sphere, as shown in Fig. 5.3. The

electron spin vector therefore undergoes periodic oscillation, alternating between eigenstates

of Bx and By (see Fig. 5.2), while the photon polarization remains linear and rotates in the
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x-v plane of real space, periodically alternating between states of linear polarization in the

X and y directions (see Fig. 5.3).

The result that the electron spin expectation precession rate 218,61 is double that of the

photon polarization precession rate 10,61 is consistent with the fact that the Sal phase factor

in (5.83) acts on the electron spin state 13 as a spinorial rotation transformation through an

angle 'l/J about the z axis, while it acts on the photon polarization state as the corresponding

vectorial rotation transformation through angle 'l/J. A spinorial rotation as expressed in the

spin-z basis ads upon the initial spinor superpositiou e=~ ( : ) via the spinorial matrix

representation [87],

(5.91)

By (5.83) the spinorial rotation due to the Sal may also be expressed in the similar form,

(5.92)

Equating these two matrices and solving for the rotation angle 'l/J then yields the factor of

two: 'l/J = 2/-t 10,61 z. In contrast to the electron case, a vectorial rotation as expressed in

1

the Cartesian (x, y, z) basis acts upon the initial polarization vector e = o (which

o
represents the helicity superposition (13+ + 13_) ex x) via the vectorial matrix representation,
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cos 'l/J sill'tP 0 1

- sin'l/J cos'l/J 0

o o 1

o

o

(5.93)

By (5.83), the vectorial rotation may also be expressed in the similar form,

cos JL 18,81z sin JL 18,8Iz 0

- sin JL 18,81 Z cos JL 18,81 Z 0

o 0 1

1

o

o

(5.94)

so that equating these two matrices and solving for 'l/J results in 'l/J = JL 18,81 z, with the factor

of two now absent.

We call the effect embodied in equations (5.86)-(5.90) orbit-controlled spin rotation,

since the direction and rate of the rotational precession of spin-polarization Bloch vector are

respectively controlled by the absolute sign and magnitude of the OAM quantum number.

We have illustrated the special case of a balanced spin-polarization superposition state for

n = 0 and Imel = 2 (see equations (5.86), (5.89), and (5.90), and Figs. 5.2 and 5.3) and its

associated spin-polarization rotation effect in Figs. 5.4(a) and 5.4(c).

Spin-Controlled Orbital Rotation

In addition to the spin-polarization rotation effect described above, the SOl is also re­

sponsible for an effect in which involves the directional control of the azimuthal rotation of

the particle's transverse spatial wave junction (i.e., its "orbital" state) by the sign of the

SAM quantum number. We call this distinct but related effect spin-controlled orbital rota-
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a.)

c.)

+
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+

Figure 5.4. (a) An OAM eigenstate with Imel = 2 in a balanced superposition of + and ­
SAM states. The ± signs contained within the transverse spatial profiles indicate the SAM of
the contributing state, while the arrows indicate its OAM handedness. (b) A SAM eigenstate
in a balanced superposition of right and left-handed OAM states with Imel = 2. When states
(a) and (b) propagate down a straight waveguide, the spin-polarization vector of the state
in (a) (see equations (5.89) and (5.90)) and the transverse spatial profile of the state in (b)
(see equation (5.97)) exhibit azimuthal rotation, as shown in (c) and (d), with the sense of
rotation controlled by the sign of the OAM and SAM quantum numbers, respectively. The
straight arrows in (c) denote the orientation of the state's spin (polarization) vector, while
the white plus signs in (d) represent relative transverse phase.

tion. In analogy with the arbitrary spin angular momentum superposition with well-defined

values of me and n considered above in (5.85), we now consider an arbitrary superposi-

tion of orbital angular momentum states with constant absolute OAM value Ime\, and with

well-defined values of its spin angular momentum and radial quantum numbers (T and n. By

(5.13) and (5.28) such a superposition may be written as
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(5.95a)

(5.95b)

According to (5.83), as the state (5.95) propagates a distance z down the waveguide,

each of the two components pick up a phase factor from the spin-orbit interaction, the sign

of which depends upon the sign of product af,l:

= Nnlmll1Pnlmll (p)

[cos (~) e;(ImM-.(16PI*m + sin (0 e-;(Im,1.--(I6PI*!))] e;(fJo'-w<)e•. (5.96b)

This equation is the OAM analogue to (5.86), which describes the evolution of an arbitrary

spin superposition under the sal. In full analogy with equation 5.84, one may define an

"orbital" (OAM) Bloch sphere associated with the two-level system defined by the basis

states In + Imel a) and In -Imel a), as shown in Fig. 5.5. Although the special case of

n = 0, Imel = 1 is shown in the figure, an orbital Bloch sphere may be defined for all nand

Imel values. Note however that for the special case of Imel = 1 (for any n value) photons do

not experience the same spin-orbit interaction as explained previously, so that this model

applies only to electrons in that case.
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Figure 5.5. (a) Representation of various superpositions of photonic transverse spatial
modes with n = 0 and Imel = 1: Rand L stand for the right handed and left handed states
In +1 rJ) and In -1 rJ), H and V for the "horizontal" and "vertical" superposition states
In +1 rJ) ± In -1 rJ), and D and A for the "diagonal" and "anti-diagonal" superpositions
In +1 rJ) ± i In -1 rJ). (b) The evolution of the OAM Bloch vector on the OAM Bloch

- 1r .
sphere due to the SOl, for the special case of a balanced superposition where e = 2' The

long black arrows represent coordinate axes which correspond to the respective orbital states
D, V and R, while the red arrow represents the OAM Bloch vector. The Bloch vector lies
entirely in the equatorial plane of the Bloch sphere and precesses about its pole, alternating
between "horizontal" and "vertical" orbital states and thereby tracing out the path given
by the solid blue line. See text for further discussion.
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The "orbital" portion (in square brackets) of the propagating state (5.96b) has the same

general form as the square-bracket orbital term in (5.95b), however the azimuthal OAM Bloch

vector aJlgle ¢ in (5.95b) is transformed by the SOl according to ~ ~ a (Wli z + a~)- This

implies that the SOl causes an OAM Bloch vector with initial spherical polar angles 0, ¢

to precess in the azimuthal ((/» direction with a precession rate of 1<5,61 per unit z, with the

direction of precession controlled by the absolute sign (J of the SAM, in full analogy with

Fig. 5.1. This OAM Bloch vector precession (shown in Fig. 5.5) corresponds physically to

the azimuthal rotation of the particle's transverse wave junction at a rate of 1<5,61 rads per

unit z, as we will presently show below for the special case of a balanced superposition.

- ~ -
For balanced states, where () = 2" (we also set ¢; = 0 without loss of generality), (5.96b)

reduces to

I¢; ((J, n)) = Nnlmel7Pnlmel (p) V; [ei (lmel4>-".lo!1lz) + e-i (lmel 4>-"'IO!1lz)] ei (!1oz- wt)e"..

= N nlmel7Pnlmel (p) V2cos (Imel ¢; - (J 1<5,81 z)ei (!1o z- wt
)e"..

(5.97a)

(5.97b)

From the cos (me¢; - (J 1<5,81 z) term in (5.97b), it is clearly evident that the particle's trans-

verse wave function undergoes azimuthal rotation analogously to the spin-polarization rota-

tion phenomenon described in (5.89) and (5.90). However, in the present case the direction

of rotation is controlled by the sign of the SAM quantum number (J. We have illustrated this

special case of a balanced orbital superposition state for n = 0 and Imel = 2 (see equations

(5.96) and (5.97), and Fig. 5.5) and its associated orbital rotation effect in Figs. 5.4(b) and

5.4(d).
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Temporal Spin and Orbital Rotation Effects

Each of the spin and orbital rotational effects described above may occur in two dis-

tinct contexts: the rotation may occur in either space (i.e., as a function of the distance z

propagated down the waveguide as already shown) or in time. We now turn to the descrip-

tion of the temporal manifestation of the SOl effects. Considering again the unperturbed

states In m£ a) == Nnlmd'l/Jnlml I(p) eiml4>euei(f3oz-wt) we now build the following spin and orbital

superpositions,

cos ( ~)c-'1 In m, +) c"CI'*-I'wl') + sin (nA In m, - ) c-',CI"I·-I'wl') , (5.98a)

cos (~) e-i1 ln +lm,1 ,,) e"'CI·'I.-I'wl') + ,in (~) e'11n -lm,1 ,,) e-'·(I"I.-I'wl'l, (5.98b)

where I<>wl == v~O) /<>,81, with v~O) == ~ being the particle's unperturbed phase velocity.

The new basic states making up these superpositions remain solutions to the unperturbed

electron and photon wave equations (5.12) and (5.27), albeit with new propagation constants

,8' = ,80 ± J.L 18,81 and angular frequencies w' = w =j= J.L I<>w\.

As discussed previously, each component of the above superposition picks up a aJ.L-

dependent phase factor from the SOl as the particle propagates down the waveguide as

given by (5.83): the states in (5.98a) pick up factors of the form e±iJl1Jf3l z , while the states in

(5.98b) pick up factors e±iU!Jf3/z, such that the resulting superposition states are
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(5.99)

and

= Nnlml I'l/Jnlml I (p)

x [cos (;) e'(lm,l<-u(IJwIHum + sin (;) e-'(lmM-uOJwIHum] e'(I'o'-<4)"u'

(5.100)

Since the respective equations (5.99) and (5.100) are identical in form to (5.86) and (5.96)

under the substitution 18,8\ z f-+ j8wl t, we conclude that azimuthal precession of the spin

and orbital Bloch vectors as derived above will occur with a temporal precession rate of 18wl

per unit t. Furthermore, all of the subsequently derived results (see (5.87)-(5.90) and (5.97))

also hold under the same replacement.

In comparison with the spatial manifestation of the Sal, the temporal manifestation

is perhaps less natural: in the former case, a monoenergetic superposition state with an

initially well-defined value for ,80 evolves under the Sal into a monoenergetic superposition

state whose components have different propagation constants ,80±8,8 (see (5.86) and (5.96)).
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Conversely, in the latter (temporal) case, the initial superposition components have different

values for both their propagation constant and angular frequency, with the SOl causing

a degeneracy in f3 so that only the frequencies remain distinct (see (5.99) and (5.100)).

Nevertheless, transverse modes of light with temporal rotational characteristics reminiscent

ofthe present SOl effect (so-called "optical ferris wheels") have been realized experimentally

and have applications in the field of atom trapping [88]. Additionally, even more closely

related free-space effects have been proposed in [89].

Applications

The spin and orbital rotation phenomena described in (5.89)-(5.90) and (5.97) each act as

so-called Hadamard transformations on their associated subspaces. For the spin-polarization

case, defining the qubits 10) == ~ (Inme+) + In me -)) and 11) == ~ (In me +) ­

In me -) ), we find that under the SOl an initial qubit state 10) evolves into the final

qubit state IfL) == ~ (10) + fLll)) after propagating though a distance z = 18~141:el"

Similarly, for the orbital case, defining qubits 10) == ~ (In +lmeIO") + In -lmejO") ) and

11) == ~ (In +lmeIO") - In -Imel 0") ) leads to the evolution of initial state 10) into final

1 1 1f

state 10") == v'2 (10) + 0" 11)) when z = 18f314Imel"

Because these spin and orbital Hadamard transformations (see Figs. 5.4(c) and 5.4(d))

are respectively controlled by the particle's OAM and SAM quantum numbers, the ef-

fects allow for the reversible transfer of entanglement between the SAM and OAM degrees

of freedom of two-particle states. We demonstrate this here for the special case where
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Im£1 = 2, for concreteness. Denoting the single-particle state in (5.97b) for Im£1 = 2 and

z = 0 as 10- HGll ), we consider a purely polarization-entangled Bell state with two pho-

tons in spatially separated HGll (Hermite-Gauss-like) spatial modes, 1+ HGll ) 1- HGll ) -

1- HGll ) 1+ HGll ). In the product ket notation, the first ket represents the quantum state

of one particle, while the second ket represents that of the other, with each particle of the

two-particle entangled state propagating in a separate waveguide. According to (5.97b),

for z = 81;,61 (Le., for 10,61 z = 22.5°) this two-particle state will evolve under the SOl

to 1+ HGtl) 1- HGll ) -1- HGll ) 1+ HGtl), where the single-photon state 10- HGfl) de-

notes a photon whose transverse spatial wave function has been rotated ±22.5° from that of

the state 10- HGll ). By employing wave plates and spatial mode converters [90], it is pos-

sible to transform this state into ID LG+2 ) IA LG_2 ) - IA LG_2 ) ID LG+2 ), where D and

A stand for 'diagonal' and 'anti-diagonal' (oriented at ±45°) linear polarization (see Fig.

5.3), and LG±2 stands for an OAM (Laguerre-Gauss-like) eigenstate with m£ = ±2. Finally,

the complementary SOl interaction described by (5.89) and/or (5.90) evolves the state into

IH LG+2 ) IH LG_2 ) -IH LG_2 ) IH LG+2 ), where H stands for horizontal polarization (see

Fig. 5.3).

Since we are left with a purely OAM-entangled Bell state, we have therefore demonstrated

the ability of the spin-orbit interaction to transfer entanglement between the spin and orbital

degrees of freedom of a two-particle state. Although we have used the polarization notation

here (D, A, H, etc.) the above results apply equally to electrons. Furthermore, by reversing

the order of the above operations, the entanglement may be restored to the spin degree of
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freedom, so that this entanglement transfer is a reversible process. Finally, we note that

when used in conjunction with a one-dimensional parity sorter (which can be made to act

analogously to a polarizing beam splitter, but on the photonic transverses mode space, see

Chapter III), the spin-controlled orbital rotation effect (which acts analogously to how a

half wave plate acts on the photonic polarization state) may be used to construct transverse

spatial mode-entangled cluster states for purposes of quantum information processing [9l].
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CHAPTER VI

SPIN-ORBIT INTERACTION AS A GEOMETRIC PHASE

In Chapter V, we showed that both electrons and photons exhibit a spin-orbit interaction

(SOl) when propagating in a cylindrically symmetric medium by solving their respective

wave equations perturbatively. We found that the Hamiltonians for both particles had

analogous forms, leading to a single expression which describes the SOl for both particle

types. However, the physical reason behind this similarity of the SOl between electrons and

photons is not made transparent by using this direct approach. On the one hand, the origin

of the SOI for electrons has a clear and direct physical interpretation, since electrons are

massive charged particles which posses a spin magnetic moment: an electron traveling with

a nonzero velocity with respect to an inhomogeneous electrostatic field will experience an

effective magnetic field due to relativistic effects, which in turn interacts with the particle's

spin magnetic moment. On the other hand, photons are both massless and chargeless and

have no appreciable magnetic moment, but still behave analogously to electrons with respect

to the SOL

In this Chapter, we show that the common origin of the SOl effects in electrons and

photons is a universal geometric phase associated with the interplay between either particle's

spin angular momentum (SAM) and orbital angular momentum (OAM). This implies that

the SOl occurs for any particle with spin, and thereby exists independently of whether or
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not the particle has mass, charge, or magnetic moment. For simplicity, we focus on the

special case of a step profile for the electron potential or photon permittivity, such that

x (p) = ()H (p) in the notation of Chapter V, with ()H (p) being the Heaviside step function.

To elucidate the aforementioned problem of the physical interpretation of the SOl, we first

describe the SOl for electrons using a heuristic approach which relies on the existence of

the electronic properties of mass, charge and magnetic moment. We then proceed to the

geometric phase approach in which we arrive at a unified interpretation of the SOl for both

electrons and photons, starting from the fundamental equation (2.48d). Finally, we compare

the results of the geometric phase-based approach with the wave equation results derived in

Chapter V.

Electronic Model of the Spin-Orbit Interaction

For the case of the electron, consider a cylindrically symmetric potential which can be

modeled by two concentric cylindrical surfaces with nearly equal radii a and a + 8a (see

Fig. 6.1). The inner cylinder is uniformly positively charged (as observed in the laboratory

frame), and the outer cylinder is uniformly negatively charged, in such a way that overall the

waveguide is neutral. The electric field is zero inside the inner cylinder and outside the outer

cylinder, but is nonzero (and approximately constant) in the region between the cylinders,

such that

E = £0~8 (p) P~ £08 (p) p,
p

(6.1)
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(a)

(b)
z

Figure 6.1. (a) Two concentric cylindrical surfaces with nearly equal radii a and a +
Ja. The inner (outer) cylinder is positively (negatively) charged, thereby giving rise to
an approximately constant electric field pointing radially outward between the cylinders,
as expressed in equation (6.1). The electric field is zero elsewhere. (b) The magnetic field
contribution due to an electron propagating paraxially between the cylinders of the waveguide
with nonzero P¢' as experienced in the electron's rest frame. As discussed in the main text,
we ignore the contribution due to pz (represented by the dotted arrow in the figure), so that
the field shown in the figure is that due only to the transverse component of momentum
Pr (represented by the bold arrow in the figure). This effective magnetic field points in the
negative-z direction for anti-clockwise P¢ (as shown above), and in the positive-z direction
for clockwise P</J.
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where e (p) =()H (p - a) - ()H (p - (a + Sa)) with ()H being the Heaviside step function and

P the radial distance in cylindrical coordinates, and where p is the radial unit vector. The

approximation on the right hand side of (6.1) is valid in the regime where Sa «a. The

magnetic field is zero everywhere in the laboratory frame.

We are interested in the case of an electron traveling down the cylinder with magnetic

moment ji and nonzero orbital angular momentum z-component Lz = PP¢ with respect to

the cylinder axis (we presently treat the electron as a classical particle, and will subsequently

quantize the problem). We also assume that the electron is moving paraxially with respect

to the cylinder axis such that IPTI « IPzl, where pz =pzz and PT =PpP + P¢¢ are the

electron's longitudinal and transverse momenta in cylindrical coordinates, respectively. We

will show that when such an electron is present in the region with nonzero electric field,

the electronic motion gives rise to a spin-orbit interaction between its magnetic moment

z-component /l'z and OAM L z .

The standard theory of the electronic SOl is summarized in [92]. The magnetic field in

the (primed) rest frame of the electron is

I V v
B = -,- x E ~ -- x E,

c c
(6.2)

where v is the electron velocity in the laboratory frame, and the Lorentz factor , ~ 1 for

sufficiently low v, which we will assume throughout this derivation. Also in (6.2), we have

employed Gaussian units, following [92]. The presence of the electron's magnetic moment

ji in such a field gives rise to a magnetic dipole interaction energy H' = -[i. B /. After
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accounting for the relativistic Thomas precession effect [92], which effectively contributes a

factor of 1/2, this energy becomes

H' = ![1. (~ x E) = __1_[1. (E x (pzz + PT)),
2 C 2mc

(6.3)

where P = PzZ+PT is the electron momentum in the laboratory frame. The SOl Hamiltonian

therefore contains two parts in our present case with respective forms [1 . (E x p/i,) and

[1. (E XPT). As the former term depends on the longitudinal momentum pz only, and

therefore does not involve the electron's transverse OAM, we henceforth disregard it as a

candidate for SOL Upon employing (6.1), however, it is evident that the latter term involves

a magnetic field vector proportional to E x PT = t:op¢>8 (p) Z, which points either parallel or

1
anti-parallel with the z-axis according to the sign of p¢> = -Lz (see Fig. 6.1). From (6.3),

p

this results in a SOl energy contribution of

(6.4)

where p ~ a has been used. From (6.4) it is evident that when the electron is in the region

a :::; p:::; a + oa, it experiences a SOl energy shift proportional to the product of I1-z and Lz.

In other words, the sign of the spin-orbit energy shift depends upon whether I1-z and Lz are

pointing parallel or anti-parallel to each other.

We quantize (6.4) by letting I1-z ----t -~Sz = _2
en

&z and Lz ----t -ina¢> == M z (&z is the
mc mc

Pauli matrix), so that the quantized Hamiltonian is
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(6.5)

(6.6)

where e= lei is the elementary charge.

The Hamiltonian in (6.5) is analogous to that which arises from an electron orbiting

around a proton in a hydrogen atom-the canonical example for SOL In that case, the

electric field can be written as E = ~£f(OUlombr, where £f(oulomb = e
2

is the Coulomb field
r r

due to the proton, so that the Hamiltonian in (6.3) gives rise to the well-known atomic

spin-orbit coupling Hamiltonian for a Coulomb potential [37]:

A e £f(0ulombh? A A

HCoulomb = 4 2 a . P,
me mr

where &- == ~ and i == *are the dimensionless SAM and OAM vector operators.

Though the Hamiltonians in (6.5) and (6.6) have similar forms and in both cases the Sal

arises from the same Hamiltonian (6.3), the difference between the spherical and cylindrical

geometries has significant physical consequences. In particular, for the cylinder case the spin

and orbital quantum angular momentum operators corresponding to the quantities J..lz and

Lz commute with the Hamiltonian, while for the atomic interaction this is not the case, so

that one must use the total angular momentum operator j2 and the z-component of total

angular momentum jz in the place of these. Therefore, while the total angular momentum

quantum numbers j and mj are good quantum numbers for the hydrogen atom, the spin

and OAM quantum numbers a and m£ are not. Conversely, a, m£ and mj are all good



173

quantum numbers for the cylinder case (though j is not, due to the breaking of the spherical

symmetry), so that states with well-defined CY and m£ are energy eigenstates.

In order to compare the heuristically derived Hamiltonian (6.5) with our previous (more

rigorous) results, we note that the Hamiltonian HS01 acts as a perturbation to the energy of

the electron as opposed to its propagation constant (30. In order to render (6.5) comparable

to our effective Hamiltonian (5.78) in Chapter V, we must multiply it by a factor _ 2;, so

that the effective spin-orbit Hamiltonian becomes

il(Heuristic) __ ~ e (p) h i
so - 2 a CYz z, (6.7)

where £0 ~ V (0) - V (a) and ~ == e (V (0) -2 V (a)) have been used (the negative sign in
me

2m
the factor -!if arises from the electronic dispersion relation as we have demonstrated in a

previous paper [93]). Substituting the Heaviside step function such that X (p) ~ eH (p - a)

in the rigorously derived equation (5.78) yields

(6.8)

where opeH (p - a) = J (p - a) has been used, with J (p - a) being the Dirac delta function.

We conclude that our heuristic derivation yields the correct result, since the function e (p)

plays a similar role as J (p - a) in the Hamiltonian by setting p ~ a upon the evaluation of

any expectation values.

Note however that the derivation of (6.7) relied on the interaction of the spin magnetic

moment of the electron with the effective magnetic field B', d. (6.2)-(6.4). Because of
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this there is no clear way to arrive at an analogous heuristic derivation of the spin-orbit

interaction for the photon, which lacks a magnetic moment. We presently overcome this

difficulty by analyzing the SOl from the viewpoint of the geometric phase.

Spin-Orbit Interaction as a Geometric Phase

Consider an electron or photon in a spin-orbit wave packet (see (2.12f)) with me = 0,

propagating along the well-defined (semiclassical) trajectory of a circular helix with constant

radius a and pitch angle 0, such that the helix pitch is hz = t::~O) as pictured in Figs. 2.3

and 2.1. As we showed in Chapter II, in a single helical cycle such an electron or photon

will accumulate a geometric phase as given by (2.49), which is a special case of the general

equation (2.48d),

(6.9)

In (6.9), A is the particle helicity magnitude, (J is the SAM quantum number of the spin-orbit

wave packet, 0 = 47f sin2 ~ is the total solid angle subtended by the particle's momentum­

space curve C as seen from the origin, and the (intrinsic) OAM quantum number me of the

wave packet has been set to zero. If the handedness of the above helical path is reversed, so

is the orientation of the closed surface bounded by C, so that the accumulated Berry phase

is still given by (6.9) but with 0 --+ -0. In order to take into account this sign dependence

of the Berry phase <PB on the handedness of the helical path, we introduce the sign factor

/-Lh = ±1 in (6.9). Furthermore, in order to extend the result to an arbitrary number of
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helical cycles we multiply <I> B by ~, where z is the axial particle position. In this way,
hz

the total accumulated geometric phase 'Y may be written as a function of both the helix

handedness /l'h and the axial particle position z:

(6.10)

We now apply (6.10) to the case of an electron (photon) traveling in a helical path along

the cylindrical surface of a waveguide with a step profile for the potential (permittivity),

such that the helix pitch angle is e. We further assume that the dimensionless waveguide

parameter b. (defined in Chapter V) obeys the weakly-guiding (paraxial) condition b. « 1,

so that the pitch angle eapproaches the critical angle for total internal reflection of the wave

fronts of the electron (photon) wave function. In such a case, we have e « 1 such that

e >:::; JI5. (d. [63]), so that

and

which yields

h ,...." 21Ta
z,...." e '

(6.11)

(6.12)

(6.13)



176

Furthermore, in this paraxial regime we may equate the magnitude>.. of the particle helicity

with the magnitude s of the particle spin along the z axis, and the sign of the helix handedness

/1h with the sign of the OAM quantum number /1, so that >.. ---t sand /1h ---t /1, respectively.

With these replacements, the accumulated geometric phase "( then gives rise to the effective

propagation constant shift 8(3geo = :r,
z

(6.14)

Equation (6.14) is our desired equation for the effective propagation constant shift due to the

accumulated geometric phase of an electron or photon propagating in a cylindrical medium;

it gives 8(3 in terms of the magnitude of the particle spin s, the signs a and /1 of the SAM

and OAM quantum numbers, and the geometric parameters .6., a, and () associated with the

waveguide.

Comparison of the Berry Phase and Wave Equation Results

Here we compare the geometric result (6.14) with the wave equation results for the first-

order propagation constant shifts 8(3 as calculated in equation (5.81) of Chapter V:

(6.15)

As already calculated above, opX (p) ---t 8 (p - a) for the special case of step profile which we

are considering here, so that the above integral is easily evaluated as
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(6.16)

Furthermore, the unperturbed electron and photon wave equations (5.12) and (5.27) each

reduce to the following equation in the step profile case,

(6.17)

where k 2 (p) is a piecewise constant function of p such that

(6.18)

for electrons and

(6.19)

s: h t d h d fi d ,T. - N. .1. () im£<P i({3oz-wt) ~ d 2 - k 2 fJ2lor p 0 ons, an we ave e ne ~nlm£lo- = nlm£I'f/nlmll pee eo- an K, = - 0

for both particles.

Upon substitution ofthe monoenergetic wave function Wnlmelo- into (6.17), this step-profile

wave equation leads to the following radial equation (d. (5.48)),

(6.20)

This is Bessel's differential equation, with solutions
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(6.21)

for p ::; a, and

(6.22)

(6.23)

for p 2: a. Here, llmtl (/';;nlmtla) is an m~h-order Bessel function of the first kind, and

K tmtl (knlmtIP) is an m~h-order modified Bessel function of the second kind. The coeffi-

cients /';;nlmtl and knlmtl are determined by requiring the radial wave function VJnlmtl (p) and

its first derivative BpVJnlmtl (p) to be continuous at the step boundary where p = a, which

leads to the following characteristic equation,

llmtl+! (/';;nlmtl a) _ Klmtl+! (knlmtla)
/';;nlmtl a ( ) = /';;nlmtl a (- )'

llmtl /';;nlmtl a Klmtl /';;nlmtl a

where the Bessel identities BpZ\mt\ (/';;njmtl) = /';;n~mtl (Z\mt\-l (/';;n\mt\) - Z\mt\+l (/';;n\mt\)) and

Z\mt!+l (/';;n!mtl-l) = 2m£ (Ztmtl (/';;nlmtl) - Zlmtl+l (/';;n\mtl)) have been used, with Z stand­
/';;nlmtl a

ing in for either the 1 or the K Bessel function.

Equation (6.23) yields a distinct characteristic equation for each value of of the OAM

quantum number m£ and radial quantum number n, with each characteristic equation con-

sisting of a single equation in the two dimensionless unknowns /';;nlmtla and knlmtla. In order

to find a second equation in these variables, we construct the quantity

(6.24)



179

(see (6.18) and (6.19)), so that "'nlmtla and K,nlmtla may be calculated by substituting (6.24)

in to (6.23) and numerically solving the resulting transcendental equation. Note also that

for a given value of me, a solution of (6.23) exists for all values of n up to an me-dependent

maximum threshold value of n above which no further solutions to (6.23) exist for that value

of me. Furthermore, there also exists a threshold value for me above which there is no value

for n which solves (6.23), so that the allowed values for me and n are always finite.

It follows from the above considerations that for p :S a the "radial" wave functions

7P~lmtl (a) may be expressed as

(6.25)

(6.26)

in a step-profile medium, so that from (6.15) and (6.16) the propagation constant shifts

become

~ /mel 2 2 ( )
o{3 = -a/-l"2 {f;1rNn\mt\J\mt\ "'nlmtl a ,

where me == /-llmel has been used, and the normalization factor N;lmti may be readily

evaluated from (5.13) and (5.28) with (6.21) and (6.22):

(6.27)
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From (6.26) and (6.27), we may then write an explicit formula for the propagation constant

shifts,

(6.28)

Although the geometric phase result (6.14) does not coincide exactly with the more

accurate perturbative result (6.28), their forms are seen to be strikingly similar when it

is recognized that the factor in curly brackets in (6.28) is of order one when Imel is near

its maximal allowed (threshold) value. Furthermore, for waveguides with a relatively large

radius a such that V 2 » 1, one may define a "semiclassical" limit of large GAM (!mel » 1),

which corresponds to a helical path near the interface of the waveguide. Since most of

the electron or photon wave function is well-localized near the fiber radius a in this limit,

we would expect agreement with our geometric phase model in which we have assumed a

helix radius equal to the fiber radius a. Upon performing a numerical analysis involving

the solution of (6.23) and (6.24), we find that in this semiclassical limit the term in curly

brackets in (6.28) approaches unity, while :;e -t (). Equations (6.14) and (6.28) are therefore
fJO a

in complete agreement for photons, where s = 1. For electrons however, s = ~' for which

(6.14) yields half of the shift given by the more rigorous perturbative calculation. This

apparent discrepancy can be explained by recalling that in deriving the result (6.14) we

required the parallel transport of the spin for both particles (d. Appendix B). Although
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this assumption is consistent with our result for photons, our effective SOl Hamiltonian

iI~~ff) in (5.78) actually causes the electron spin vector (8) to precess at twice the rate of

the photon polarization vector (d. (5.87b) and (5.89) in Chapter V and the subsequent

discussion). One therefore expects the accumulated phase due to the electron spin evolution

to be precisely double the amount predicted by (6.14), as we reported in [84].

As was shown explicitly in Chapter V through the derivation of (5.86) and (5.96), it is the

SAM and OAM Bloch vectors of the electron and photon which evolve analogously under the

SOl, as opposed to the electron spin and the photon polarization vectors. It is therefore these

more abstract quantities which undergo parallel transport due to the spin-orbit interaction

according to (5.86) and (5.96) resulting in the SOl rotational effects discussed in in Chapter

V. We therefore conclude that the spin-orbit interaction dynamics of the electron and photon

are identical to first order in perturbation theory and have a common geometric origin, with

the role of the electron's potential energy U (p) being played by the permittivity E (p) in the

photon case.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we have presented experimental and theoretical techniques for the

measurement and control of transverse photonic degrees of freedom. In Chapter II we pre­

sented a general theory of a quantum "spin-orbit" wave packet with well-defined values of

intrinsic spin angular momentum (SAM) and orbital angular momentum (OAM), propagat­

ing in a weakly inhomogeneous medium with a cyclically varying momentum. We found

that a particle (either an electron or a photon) in such a wave packet exhibits a geometric

phase which depends upon both the spin and orbital quantum numbers, as well as the mag­

nitude of the particle helicity and the geometric properties of the particle trajectory as given

in (2.48d):

(7.1)

Here, ..\. is the particle helicity magnitude, <7 and m£ are the respective SAM and OAM

quantum numbers of the spin-orbit wave packet, and 0 is the momentum-space solid angle

subtended by a cyclical loop.

Equation (7.1) has two contributions; the -..\.<70 term, which is different for electrons and

photons by a factor of one-half, and the -m£O term, which is the same for both particles.

Since both terms are connected with geometric properties of the curvilinear particle trajec-
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tory (i.e., the particle's "orbit") through the 0 term, we conclude that the spin-dependent

-..\170 term plays the role of a semiclassical "spin-orbit" interaction, while the intrinsic

GAM-dependent -..\m£O term plays the role of a semiclassical "orbit-orbit" interaction in

which the intrinsic GAM and the semiclassical extrinsic orbital motion interact via the geo­

metric phase. For photons (where ..\ = 1), the symmetry between the spin-dependent term

and the GAM-dependent term has the consequence that the polarization state of a linearly

polarized beam-like light field rotates at the same rate as the transverse image carried by

the field due to this semiclassical geometric phase effect. As a consequence, any series of

out-of-plane mirror reflections will have the same transverse rotational effect on polarization

as is does on beam image.

In Chapter III, we presented theoretically the properties of interferometric devices based

on both one-dimensional and two-dimensional transverse mode parity of photons. We showed

how the interferometer based on one-dimensional parity can be made to act as a polarizing

beam splitter (Fig. 3.7(a)), or a linear-to-circular polarization converter (Fig. 3.7(b)) for

well-defined Hermite-Gauss (HG) modes, and a one-dimensional (I-D) parity sorter (Fig.

3.7(c)) or an Hermite-Gauss to Laguerre-Gauss (HG-to-LG) mode converter (Fig. 3.7(d))

for modes with well-defined (vertical or horizontal) linear polarization states. In the former

pair of cases, the action of the interferometer on the polarization state depended upon the

parity properties of the input transverse spatial mode, while in the latter pair, the action

on the spatial mode depended on the input pOlarization state. In this sense, the I-D parity

interferometer couples the spin and orbital degrees of freedom of photons, even though as
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an in-plane device it does not operate according to any geometric phase-based interactions

in the sense of (7.1). For the interferometer based on two-dimensional (2-D) parity, we

showed how it can be made to act as a 2-D parity sorter (Fig. 3.8(a)) or a device which

imparts a positive (negative) phase shift to modes which are even (odd) with respect to

their 2-D parity (Fig. 3.8(b)). We introduced a new type of phase-stable interferometric

2-D parity sorter, an out-of-plane Sagnac interferometer whose sorting capabilities are based

on the geometric phase effect of (7.1). Two-dimensional transverse spatial parity provides

a second, type of qubit encoding that is based on continuous photonic degrees of freedom

in addition to previously realized schemes based on one-dimensional parity. This new type

of encoding can be made more robust than the 1-D case due to the stability of our Sagnac

interferometer.

In Chapter IV, we experimentally verified predictions made in Chapter III. We observed

the predicted behavior of the 1-D parity interferometer as both a 1-D parity sorter and

an HG-to-LG mode converter, and of the 2-D parity interferometer as a 2-D parity sorter.

In doing so, we realized the first 2-D parity measurements of Hermite-Gauss transverse

spatial modes, and demonstrated the stable sorting of these modes according to their 2-D

parity. Additionally, we employed the 2-D sorter to sort the output modes of a "three-mode"

optical fiber. Although we observed port B of our interferometer (see Fig. 4.3) as operating

at 95% or better efficiency for all input modes, a detailed loss and efficiency analysis of

the device allowed us to conclude that it can be realistically made to work at nearly 100%

efficiency. We also discussed several applications of this interferometer, including its use
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as an alternative to holograms in spatial mode filtering, the measurement of the OAM

of single photons, the production of Bell states entangled in first-order transverse spatial

modes, and the production of heralded single photons in first-order transverse spatial states

corresponding to an arbitrary point of the first-order spatial mode Poincare sphere.

In Chapter V, we provided the first unified treatment of the spin-orbit interaction (Sal)

for both electrons and photons in the "wave function" picture, in which the full wave nature

of each particle is taken into account. Solving both the Dirac and Maxwell equations pertur­

batively in a straight cylindrical waveguide, we showed that the effective sal Hamiltonian

has the same form for both electrons and photons. As a consequence of this, we found that

the sal is quantitatively described by a single expression applying to either an electron or a

photon, which predicts that either particle picks up a phase <I> due to the sal of the general

form

<I> ex: G"rn£z, (7.2)

where z is the distance the particle has propagated down the waveguide.

Using this expression, we predicted the possibility of four distinct spatio-temporal spin

and orbital rotational effects for each particle, in which the particle's spin and orbital degrees

of freedom influence one another due to the sal as it propagates down the waveguide.

Specifically, we found that the sal can cause the particle's spin/polarization Bloch vector,

with initial spherical polar angles e, ¢, to precess in the azimuthal (¢) direction with a

precession rate of 18,81 per unit z, with the direction of precession controlled by the absolute
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sign I-l of the OAM (see Fig. 5.1). Conversely, the SOl can additionally cause the particle's

OAM Bloch vector to precess in the azimuthal direction with the same precession rate 10,81,

with the direction of precession controlled by the absolute sign (J of the SAM. We conclude

that the spin/polarization and OAM Bloch sphere dynamics are the same for both electrons

and photons with respect to the SOl, although the precession rate of the average electron

spin vector is twice the rate of that of the photon polarization vector due to the geometric

differences between spinors and vector dynamics. Employing these rotation effects, we also

demonstrated theoretically that these rotational phenomena allow for the reversible transfer

of entanglement between the SAM and OAM degrees of freedom of two-particle states.

Finally, in Chapter VI, we focused on the special case of SOl in a waveguide with a

step-profile for the electronic potential or the photonic permittivity, and used (7.1) to show

that the common origin of the SOl effects in electrons and photons is a universal geometric

phase associated with the parallel transport of each particle's SAM and OAM Bloch vectors.

Recent numerical studies carried out by us for arbitrary waveguide parameter V suggest

a conincidence between the strength of the SOl for a particle with average radial position

PAvg as calculated by (6.28), and the magnitude of the geometric phase as calculated by

(6.14), with the radius of the semiclassical helical trajectory chosen according to a ~ PAvg

and with s ~ 1. This suggests that the geometric phase analogy may be carried at least

approximately beyond the semiclassical limit of large, "near-threshold" OAM.
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Final Remarks

The research presented in this dissertation makes possible several future directions that

could prove fruitful for the measurement and control of transverse spatial states of light.

Consider first the transverse spatial parity-based interferometers discussed in Chapter III.

Although our focus was primarily upon the 2-D parity sorter due to its superior phase

stability as compared to the interferometer based on 1-D parity, the latter interferometer

may also be productively used to manipulate the transverse spatial output of a biphoton

state from spontaneous parametric down conversion. Furthermore, since the 1-D parity

interferometer (unlike its 2-D counterpart) allows for nontrivial interaction between the spin

and orbital photonic degrees of freedom, employing a sufficiently stable version could open

up fruitful new avenues toward the engineering of biphoton states.

A second direction involves further study of the photonic spin-orbit interaction in other

geometries besides that of the cylindrically symmetric case. For example, to the author's

knowledge the Sal effects for a spherically symmetric permittivity remains an open question

for the photonic case, although the electronic analogue is, of course, the well-known textbook

problem of a hydrogenic atom (i.e., an electron in a spherically symmetric electrostatic

potential). Do the photon and electron exhibit analogous physical characteristics in the

spherical case, as they have been found to do under cylindrical symmetry? Although this

particular question does not seem to have been discussed in the literature, the coupling of

photons into micron-scale glass microspheres is a well-studied and experimentally accessible
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field [94]. Further study of such a spherically symmetric "photonic hydrogen" system has

the potential to be of both pedagogical and practical value. Pedagogically speaking, in

solving the electronic and photonic versions of a similar problem in tandem leads to a deeper

understanding of how both particles behave, as we have already seen in the cylindrical case.

Practically speaking, with a functional photonic analogue of the hydrogen atom in hand,

one could bring to bear 100 years of collective experience in atomic physics in order to probe

the physics of the photon, thereby informing the study of photons with electrons, and vice

versa.

A major theme throughout this thesis is an emphasis on treating both electrons and

photons on an analogous footing, as quantum particles obeying their respective relativistic

wave equations. From this perspective, we derived a "semiclassical" spin-orbit Berry phase

as proportional to the sum ofthe helicity and OAM quantum numbers: Aa+me. In contrast,

the "quantum" Berry phase for a particle in a straight waveguide is proportional not to the

sum of a and me, but their product arne. Although these interactions therefore seem to have

different forms, we have arrived at a semiclassical limit of the latter expression via direct

application of the former, by identifying the extrinsic OAM associated with the semiclassical

orbital path with the intrinsic OAM for a quantum particle in a straight waveguide. Since

the full details of the connection between the geometric phase and the spin-orbit interaction

in the wave function picture remain unclear, what is clear is the need for further study along

these lines.
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APPENDIX A

THE PHOTON WAVE EQUATION AND THE PARAXIAL LIMIT

In this appendix we derive and solve an exact three-component Schrodinger-type wave

equation for a monoenergetic beam-like photon propagating in free space, and then take the

paraxial limit of this wave equation and its solutions.

We begin with Maxwell's equations in free space, which for monoenergetic electromag-

netic fields E (r, t) = E (r) e-iwt and H (r, t) = H (r) e-iwt may be written as [60]

\7. E = 0, (A.la)

\7. H = 0, (A.lb)

\7 x E = iW/-LoH, (A.lc)

\7 x H = -iwtoE, (A.ld)

Multiplying (A.la) and (A. Ie) by the factor .~, multiplying (A.lb) and (A.ld) by the
y 2po

factor ~ (with ~ = ±1), and adding (A.la) to (A.lb) and (A.Ic) to (A.ld) yields the
y 2tO

respective equations

\7. FE = 0, (A.2a)

(A.2b)
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where FE == ~ (JEOE + }:iv0QH) is known as the Riemann-Silberstein vector, and k =

wVEoj.to has been used. The Riemann-Silberstein vector FE, which may be thought of as the

wave function for the photon [26, 27, 95], therefore obeys the wave equation (A.2b), with

(A.2a) playing the role of an auxiliary condition on FE.

For a specific value of}:, FE may be thought of as a component of a photon wave

function with helicity }:, so that a complete six-component photon wave function;: may be

constructed by composing Riemann-Silberstein vectors of positive and negative helicity:

;: = ~ ( (JEOE + iVJLOH) )

V2 (JEOE - iv0QH).
(A.3)

In (A.3), the upper and lower components, which are three dimensional vectors, respectively

transform according to the irreducible representations (1,0) and (0,1) of the proper Lorentz

group. In this sense, the object (A.3) stands in complete analogy with the spinor wave

1
function for massless spin-'2 particles which obeys the Weyl equation, and whose upper and

lower spinorial components transform according to the irreducible representations (~, 0)
and (0, ~) of the proper Lorentz group. In contrast to wave functions for massive particles,

the bilinear product ;:t;: is an energy density as opposed to a probability density, so that the

volume integral ;:t;:' of two distinct photon wave functions;: and ;:' cannot be interpreted

as the probability amplitude for finding a photon in the state ;:, when it is known to be

in state ;:' [96]. However, for a photon described by a given wave function ;:, the product

;:t;: is related to the probability for a photon-counting detector to detect the photon [95J,
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and in this way a somewhat looser analogy with massive particle wave functions may still

be made.

In the case when a photon propagates in an inhomogeneous medium, the upper and

lower components of:F couple to one another [27J, and the mathematical treatment becomes

much more complicated. In free space, however, the components of :F are decoupled, so

that we use the two independent equations (A.2b) (one for each value of E) and the single

three-component vector F to describe the evolution of the photon wave function. We may

derive from (A.2b) a Helmholtz-like equation for Fl; by taking the curl of both sides of that

equation, which yields

(A.4a)

(A.4b)

where the vector identity \7 x \7 x Fl; = \7 (\7 . Fl;) - \72Fl; and (A.2b) have been used on

the left hand side of (A.4a), while (A.2a) has been used on the right.

We are interested in monoenergetic beam-like photons whose wave functions propagate

in a well-defined direction with phase velocity ~, where f3 is known as the propagation

constant. Taking the propagation direction to be the z-direction, the photon wave function

takes on the traveling-wave form

(A.S)
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where we have used cylindrical coordinates (p, ¢, z), and we have labeled Riemann-Silberstein

vector with its respective frequency and propagation constant quantum numbers wand 13, in

addition to the helicity quantum number ~. Furthermore, without loss of generality we may

assume that F (p, ¢, z) ---t F (p, ¢) is independent of z, since the resulting non-diffracting

beams (the so-called Bessel beams, d. [35, 36]) form a complete basis set for an arbitrary

diffracting wave F (p, ¢, z). With this assumption, substituting (A.5) into (A.4b) yields

(A.6)

This equation, known as the vector Helmholtz equation, is essentially three independent

copies of Bessel's partial differential equation. Its solutions assume the form

(A.7)

where

(A.8a)

(A.8b)

(A.8c)

1
In (A.7), we have employed a "circularly polarized" basis for F such that €u == J2 (x + hJy),

where (J = ±1. To avoid confusion, we stress that (J is a label for the basis vectors in the

plane transverse to the wave propagation, and is therefore distinct from the helicity quantum
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number E = ±1 defined earlier for the photon wave function, although as we will show these

quantities do correspond in the paraxial limit. In (A.8), Jm ; (K,p) is a Bessel function of the

first kind of order mi, with K, == Jk2 - {32 being the transverse wave number.

The vector Helmholtz equation (A.6) is a necessary but not sufficient condition for the E

and H fields contained in F to be solutions of Maxwell's equations (A.l), as is well known.

Therefore, in order to completely account for the physical constraints placed upon Fw.a E,

we must again use the fundamental photon wave equation (A.2b). In view of this, following

a method due to Kapany and Burke [97], we decompose the V7 operator into the circularly

polarized basis:

'V = axx + ayY + azz = ~ [ax - iay ] (x + iy) + ~ [ax + iay ] (x - iy) + azz

~ [ax - iay ] e+ + ~ [ax + iay ] e_ + azz

(A.9)

Using (A.7) and (A.9), (A.2b) may then be written as

To simplify (A.IO) we use the following identities,

elY x elY = 0,

(A.I0)

(A.lla)
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(A.11b)

(A.11c)

(A.11d)

so that the coupled vector equation (A.10) breaks down into three coupled scalar partial

differential equations:

(A.12a)

(A.12b)

(A.12c)

(A.13a)

(A.13b)

The equations (A.12) may be easily solved once it is recognized that the operators Va

act as quantum mechanical raising and lowering operators on the solutions (A.8). To see

this, we must express these operators in terms of cylindrical polar coordinates:

Va == ~ (ox - <7iOy)= ~ (x - <7iy) . (xox+ YOy) = ~ e_a · V T ,

1 AVT ~ pOp + -¢o¢,
p

e_a = X - <7iy = cos¢ P- sin¢ J - <7i (sin¢ p+ cos¢ J) = e-ai¢(p - <7iJ) , (A.13c)

~ Va = ~ e_a · VT = e~¢ (p - <7iJ) . (pOp + ~Jo¢) = e~¢ (op - <7~o¢) ,

(A.13d)
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where (A.13b) and (A.13c) have been substituted into (A.13a) to obtain (A.13d). Using

(A.13d), we find that application of "\7u on the wave function components Fi , which have

the general form fm == Jm (Kp) eim
</>, results in

(A.14a)

(A.14b)

(A.14c)

(A.14d)

where the Bessel function identity (op + (J';) Jm (K,p) = (J'K,Jm _ u (K,p) has been used in

(A.14c). From this we see that "\7ufm ex fm-u, so that "\7u acts as raising and lowering

operators on the solutions (A.8), as was previously claimed.

It now follows from inspection of equations (A.12) using "\7ufm ex fm-u that the effect

of (A.12) is to constrain the relationship between quantum numbers m+, m_, m z to m u =

m z - (J', so that (letting m z == m) we may write

(A.15a)

(A.15b)

(A.15c)

where A+, A_, and Az are as yet undetermined constants. Substituting (A.15) back into
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(A.12) then turn the three coupled partial differential equations into three algebraic equa-

tions,

i",
(A.16a)e+ : J2Az + j3A+ = ~kA+,

e_ : z'" (A.16b)J2Az - j3A_ = ~kA_,

z'" (A.16c)ez : - J2 (A+ + A_) = ~kAz,

Only two ofthese equations are linearly independent, so we may choose to solve (A.16a) and

(A.16b) for of Az :

i", 1
A+ = J2 ~k _ j3Az,

i", 1
A_ = J2~k+j3Az,

which may be alternatively expressed in the more compact form

(A.17a)

(A.17b)

(A.17c)

(A.18a)

(A.18b)

(A.18c)
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where k2 = /p + ",2 has been used in (A.18b), and is == ~ in (A.18c). Substituting (A.18c)

into (A.15), and (A.15) into (A.7) and (A.8) then gives the exact form of the beam-like

photon wave function in free space,

Fw~"m ~ '0 [~ (Evil + ,2 + 1) .Im- l (Kp) eilm-ll<,,+

+ ~ (Evil + ,2 - 1) .Im+l (Kp) ei1m+lI<,,_ - ~O.Jm ("p) e'm<z] eiP'-w', (A.19)

where Fa == i1A
. The subscripts (w {3'E m) of F, along with the relation w2ta/la = {32 + ",2,

completely determine the form of Fw ,6Em.

We are now in a position to take the paraxial limit of the wave function (A.19), which

is defined as the regime where the particle momentum is directed predominantly along the

propagation axis of the wave function, so that", « {3, or equivalently, is « 1. The paraxial

limit of the free space photon wave function is therefore the limit where is ~ 0 in (A.19):

F F parax
w,6Em ~ w,6 Emt

(A.20)

The paraxial non-diffracting beams of (A.20) (including the small z-component given in

(A.19)) have been previously derived in [98J as a special case of the general solution to the

vector Helmholtz wave equation (d. their example of a "circularly polarized beam"). This
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stands in contrast to our approach which has derived (A.20) as the paraxial limit of the

exact solutions to Maxwell's equations, which more clearly brings out the role of the helicity

quantum number ~ in taking this limit.

Comparing (A.19) and (A.20) we see that in the paraxial regime, the longitudinal (z)

component of the photon wave function is negligible, and either its e+ or e_ component must

vanish for a given well-defined helicity ~. Because of this, a wave function Fw,BEm which is

paraxial has well-defined values for its spin angular momentum (SAM, or circular polarization

in the transverse plane) and its orbital angular momentum (OAM), with respective quantum

numbers ~ and me == m -~, which contrasts with the general case (A.19) in which Fw,BEm

is an eigenstate of neither SAM nor OAM. In light of this, in the paraxial regime we may

identify the quantum number m == mj as the z-component of total angular momentum, and

replace m ----t me +~ in (A.20), which yields the wave function F~a;~me of a paraxial photon

in term of its SAM and OAM quantum numbers ~ and me:

(A.21a)

(A.21b)

(A.21c)

where Jme (Kp) = (_1)ml J1mll has been used in (A.21b), and N is a normalization constant.
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From (A.21c), we conclude that the helicity quantum number ~ = ±1 appears only in the

circularly polarized basis vectors e±l, so that the helicity ~ and the circularly polarization

quantum number (J do correspond in the paraxial limit, so that we may equivalently write

(A.22)

We will make extensive use throughout this dissertation of the form (A.22) for the paraxial

photon wave function.

Finally, we note that the paraxial wave function in (A.22) has the general form given

by (A.7) and (A.8) (i.e., the solutions to (A.6)), but with Fz = 0 and only one of F+ or

F_ nonzero. It follows from this that the transverse part of (A.6) is sufficient to derive the

photon wave function in the paraxial limit, so that the wave equation for paraxial photons

takes the form

(A.23)

where the subscript T emphasizes that the photon wave function IS entirely transverse

(Fz = 0), and where the quantum number subscripts (w, (3, (J, me) have been suppressed.

Therefore, in the paraxial limit, the transverse Helmholtz equation (A.23) is both a nec-

essary and sufficient condition for the photon wave function to be a solution to Maxwell's

equation, which is not true generally. Furthermore, since in free space the electric field E

uniquely determines the magnetic field H, we may choose at our convenience to consider

only the real part of (A.23), which takes the form
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(A.24)

since the real part of the Riemann-Silberstein vector F~ = ~ (JEOE + Eiv1iQH) is ~E

(ET is the transverse electric field). We use (A.24) as the starting point in our discussion

of the free-space wave equation for a monoenergetic beam-like photon in Chapter II (see

equation (2.4)).
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APPENDIX B

GAUGE POTENTIAL IN MOMENTUM SPACE

In this appendix, we derive the forms of the momentum-space gauge potential (connec-

tion) associated with an electron or photon propagating with well-defined momentum p

along a curvilinear path. Throughout this appendix, scalar matrix operators are generally

denoted by capitol letters with hats (e.g. U), while unit vectors are denoted as lower case

bold letters with hats (e.g. x). Vectorial matrix operators are denoted with bold capitol

letters with hats (e.g. A).

Electron Gauge Potential

We begin with the case of an electron, which is described by the Pauli equation. In the

absence of external fields, the Pauli equation reduces to the form [37]

2

ilWt I'lj;) = Jm (0-. p)21'lj;),

which may also be expressed in terms of the electron spin operator S == ~o- as

(B.1)

2k
2 (A ) 2ilWt I'I/J) = -;;;- s· P I'I/J) . (B.2)

In (B.1) and (B.2), S == ~o- = ~ (o-xx + o-yY + o-zz) is the Pauli spin operator, p == ~ is the
2 2 p

unit momentum vector, and p = hk has been used.
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The helicity operator 8· p contained in (B.2) has the following explicit matrix form:

A ILl ( PzS·p =--
2p

Px + ipy

Px - ipy ) .

-Pz

(B.3)

8.p may therefore be diagonalized by the momentum-dependent unitary (gauge) transfor-

mation [28] U(p) -1 (8, p) U(p), where

(B.4)

(B.5)

as can be readily checked by direct matrix multiplication. The explicit result is

U(p)-l (8 p) U(p) ~ U_oJ =0 M.,

where ,\ = ~ is the magnitude of the electron helicity.

As is well known, in diagonalizing the helicity operator, the gauge transformation

U(p)-1 (8, p) U(p) gives rise to a gauge covariant derivative (i.e., a gauge connection)

A. (p) which determines the parallel transport of the electron spin as it propagates along the

curvilinear path (d. [42]). This gauge connection is calculated by the expression

(B.6)

where the vectorial directional derivative op == opxPx + OpyPy + opypz acts on each element

of the matrix U(p). Direct calculation of A. (p) using (B.6) and (B.4) yields



A(p) = 2p (p1+ p,) [(iPxaO+ (P + p,) uy + pya,)x

+ (iPyao + (p + pz) ax - Pxo-z)Y

+ (2iP,ao+ pyax - PXUy)+
where aD is the 2 x 2 identity matrix.
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(B.7)

We are interested in the case where the electron undergoes sufficiently adiabatic changes

in its momentum such that its helicity a does not undergo a transition from a to -a. This

assumption is equivalent to neglecting the off-diagonal elements of A (p), as has been shown

in a general mathematical context in [42, 99, 100]. The diagonal part of A(p) is found

simply by setting all terms proportional to ax and ay to zero in (B.7):

AD (p) ~ 2p (P1+ p,) [ (ipxuo + pyu,) x + (iPYUO - Pxu, )S + 2iP'UOZ] , (B.8a)

~ [2P (P1+ p,) (iPxx + ipyS + 2ip,z) ao + 2p (pl+ p,) (PyX - PxS) U,] , (B.8b)

== Auo (p) aD + Auz (p) az . (B.8c)

Now, since AD (p) is a matrix-valued vector field in momentum space, it has a well-defined

(matrix-valued) curl. Taking the curl of AD (p) via (B.8c) yields

(B.9a)



2 2 ~. PT - ppz (~ ~) ~ p ~
= Z 3 ( )2 pyX - PxY 0'0 - "2O'z,

P P + pz P
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(B.9b)

where p~ == P; + p;. Furthermore, in the paraxial regime where Ox == Px « 1, Oy == Py « 1,
pz pz

and pz ::::; P, (B.9b) approximately reduces to

(B.I0)

Therefore, in the paraxial limit where Ox,Oy -+ 0, the term proportional to 0-0 vanishes so

that

(B.ll)

or, since o-z is diagonal, we may express this 2 X 2 matrix equation as two independent 1 x 1

equations via the helicity quantum number 0':

~ P
\7 X AD (p) = -0'"2'

P
(B.12)

From this, it is evident that we may define an effective gauge connection Aeff (p) whose

curl gives the result - ~ , such that \7 x AD (p) = 0'\7 X A eff (p) in the adiabatic and paraxial
P

limits. Upon comparing (B.12) with (B.7), we see that Aeff (p) is given by (B.7) with all

terms proportional to 0-0 , o-x, and o-y set equal to zero, and o-z set equal to 1:

(B.13)



205

The 1 x 1 vector gauge connection Aeff (p) plays a role analogous to that of the vector

potential A in magnetostatics, whose curl gives rise to the magnetic field (B = \7 x A).

Applying this analogy to the present case, the "magnetic field" associated with Aeff (p) is

that of a "magnetic monopole" ~ in momentum space with "charge" -1. For this reason,
p

Aeff (p) is sometimes called a gauge (or monopole) potential.

Recalling now the definition (B.6) of the the gauge connection A (p), we are led to the

definition of the effective gauge potential Aeff (p):

(B.14)

where the unitary transformation Ueff (p) now takes the form of a 1 x 1 momentum-dependent

unitary matrix, which thereby has the general form

(B.15)

Using (B.15) and (B.14) implies that Aeff (p) may be expressed as

(B.16)

which has the same form as the integrand of (2.45) in Chapter II. Letting p -+ kc in (B.16),

we have thereby shown for electrons that the quantity e-i4>(kc)ii\cei4>(kc) has the form of a

momentum-dependent vector potential A (kc ) with curl \7 x A (kc ) = - ~;, as claimed in
c

Chapter II.
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Photon Gauge Potential

The photon case proceeds analogously to the electron case above. Photon evolution is

described by the photon wave equation, which for monoenergetic photons has the free-space

form

(B.17)

1
where the Riemann-Silberstein vector F d == M (JEOE + O"iJJLOH) plays the role of the

. y2

photon wave function as discussed in Appendix A. Letting F d ---+ I'l/J), equation (B.17) may

alternatively be written in a form analogous to the Pauli wave equation for electrons (B.2),

inBt I'l/J) = O"ckS . f> I'l/J) ,

where S == n(sx + Sy + sz) is the spin operator for particles of spin one, with

(B.18)

o 0 0

Sx = 0 0 -i

o i 0

o 0 i

o 0 0 ,and Sz =

-~ 0 0

o -~ 0

o 0

000

(B.19)

For photons, the helicity operator S . f> contained in (B.18) has the following explicit

matrix form:
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0 -pz py

S A in (B.20)'p=- pz -0 -Px
P

-Py Px 0

As in the electron case, S . f> may be diagonalized by a unitary gauge transformation [28J

U(p)-l (S. f» U (p), where

Pxpz - ippy pxpz + ippy PxPT

A 1
U (p) := - pypz + ippx Pypz - ippx PyPT

PPT
(B.21)

P2
- T

where PT := Jp~ + p~. The explicit result is

PzPT

100

U(p)-l(S.f»U(p)= 0 -1 0 :=AEz ,

000

(B.22)

as can be checked by direct matrix multiplication, where A = 1 is the magnitude of the

electron helicity, and Ez is the diagonal 3 x 3 "Pauli" spin z-component matrix for a spin

one particle as given in (B.22).
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The photon gauge connection A. (p) may then be directly calculated via (B.6), yielding

A 1
A(p) = -22 2

P PT

. 2
PT (-PPv + ipxPz)-zpxPT

ipx (p2 + p;) + 2ppvPz PT (PPy + ipxPz) X

2PT (PPy + ipxPz) 2' 2zpxPT

. 2
PT (pPx + ipvPz)-ZPyPT

ipy (p2 + p;) - 2ppxPz PT (-PPx + ipypz) Y

2PT (-PPx + ipvPz) 2ipyp~

pz pz -PT

i
Z,+ 2p2 pz pz -PT

2PT 2PT 2pz

(B.23)

FUrthermore, in the paraxial limit A. (p) -+ A.Parax (p), we may neglect the terms in (B.23)

which are second and third order in the small quantities Px, Py, or PT in comparison with

the dominating terms which have only one factor of Px, Py, or PT:

ipx (p2 + p;) - 2ppvPz 0 0

A 1
A parax (p) =~ 0 ipx (p2 + p;) + 2ppypz 0 x

P PT

0 0 0
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ipy (p2 + p;) + 2ppxPz 0 0 pz pz 0

1 A t
Z,+-- 0 ipy (p2 + p;) - 2ppxPz 0 y+ 2p2 Pz Pz 0

2p2p~

0 0 0 0 0 2pz

(B.24)

Simplifying (B.24) and letting J == PT, then gives
pz

1 0 0 1 1 0

A () i (1 + J-2) (~ A) tpz A
Parax P = 2p2 PxX + pvy 0 1 0 +-z 1 1 02p2

o 0 0 0 0 2

1 0 0
J-l

(B.25)+ - (-PyX + Pxy) 0 -1 0
PPT

0 0 0

where (p2 + p;) = (p~ + 2p;) has been used. Since J « 1 in the paraxial limit, the J-2 and

J-1 terms dominate in (B.25), such that A Parax (p) ----t AD (p) is approximately diagonal,

(B.26a)

(B.26b)

where 1;0 (1;z) is a 3 x 3 matrix consisting of the 2 x 2 identity (Pauli matrix (Jz) and a

third row of zeros as shown in (B.25). The diagonal form AD (p) in (B.26) for photons is

analogous to (E.8) in the electron case.
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We now take the curl of AD (p) as before, which by (B.26b) results in

V' X AD (p) = (V' x Ato (p)) I;o + (V' x Atz (p)) I;z,

.2pz ~ ~ ~ :f> ~
= -t-4 (PyX - Pxy) I:o - 2'I:z.

p p

(B.27a)

(B.27b)

Again using 8x == Px « 1, 8y == py « 1, and pz ~ p, we find that the paraxial equation
pz pz

(B.27) may be written as

(B.28)

so that once more we find that the I;z term dominates in the paraxial limit:

(B.29)

Therefore, since o-z = I;z in the 2 X 2 subspace we conclude that in the paraxial limit, for

both electrons and photons, the curl of the gauge connection takes the form

(B.30)

which is consistent with the result first reported in [28]. It then follows from (B.ll)-

(B.16) that for both electrons and photons, the quantity e-i¢(kc)i8Iccei¢(kc) has the form

of a momentum-dependent vector potential A (kc) with curl V' x A (kc) = - ~~, as claimed
c

in Chapter II.



~-------

I

I

I

211

BIBLIOGRAPHY

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

[2] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih,
Phys. Rev. Lett. 75, 4337 (1995).

[3] P. G. Kwiat, E. Waks, A. G. White, 1. Appelbaum, and P. II. Eberhard, Phys. Rev.
A 60, R773 (1999).

[4] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412,313 (2001).

[5] S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, Phys. Rev. A
69, 023811 (2004).

[6] N. K. Langford, R. B. Dalton, M. D. Harvey, J. 1. O'Brien, G. J. Pryde, A. Gilchrist,
S. D. Bartlett, and A. G. White, Phys. Rev. Lett. 93, 053601 (2004).

[7] S. P. Walborn, S. Padua, and C. II. Monken, Phys. Rev. A 71, 053812 (2005).

[8] T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, Phys. Rev. Lett. 99,
250502 (2007).

[9] T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, Phys. Rev. Lett. 99,
170408 (2007).

[10] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Phys. Rev. Lett. 95,
260501 (2005).

[11] S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, Phys. Rev. Lett. 90,
143601 (2003).

[12] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52,
R3429 (1995).

[13] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As­
pelmeyer, and A. Zeilinger, Nature 434, 169 (2005).

[14] N. Kiesel, C. Schmid, U. Weber, G. T6th, O. Giihne, R. Ursin, and H. Weinfurter,
Phys. Rev. Lett. 95, 210502 (2005).



212

[15] C.-Y. Lu, X.-Q. Zhou, O. Giihne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel,
T. Yang, and J.-W. Pan, Nat. Phys. 3, 91 (2007).

[16] C.-Y. Lu, X.-Q. Zhou, O. Giihne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel,
T. Yang, and J.-W. Pan, Nat. Phys. (2010).

[17] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W.
Pan, Phys. Rev. Lett. 99, 120503 (2007).

[18] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U'Ren, C. Silberhorn,
and 1. A. Walmsley, Phys. Rev. Lett. 100, 133601 (2008).

[19] P. J. Mosley, J. S. Lundeen, B. J. Smith, and 1. A. Walmsley, New Journ. Phys. 10,
093011 (2008).

[20] S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, Phys.
Rev. Lett. 103, 253601 (2009).

[21] E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and
E. Santamato, Phys. Rev. Lett. 103, 013601 (2009).

[22] 1. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A
45, 8185 (1992).

[23] H. Sasada and M. Okamoto, Phys. Rev. A 68, 012323 (2003).

[24] L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).

[25] S. J. van Enk, Opt. Commun. 102,59 (1993).

[26] 1. Bialynicki-Birula, Acta Phys. Pol. A 86, 97 (1994).

[27] 1. Bialynicki-Birula, in Progress in Optics XXXVI, edited by E. Wolf (Elsevier, Ams-
terdam, 1996), pp. 245-294.

[28] 1. Bialynicki-Birula and Z. Bialynicka-Birula, Phys. Rev. D 35, 2383 (1987).

[29] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).

[30] S. M. Rytov, Dokl. Akad. Nauk. SSSR 18, 2 (1938).

[31] S. Pancharatnam, Proc. Ind. Acad. Sci. 44, 247 (1956).

[32] Y. Aharonov and D. Bohm, Phys. Rev. 115,485 (1959).

[33] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

[34] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).



213

[35] J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).

[36] J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).

[37] R. Shankar, Principles of Quantum Mechanics (Springer, Berlin, 1994), 2nd ed.

[38] 1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products (Academic
Press, San Deigo, 1994), 5th ed.

[39] B. E. A. Saleh and T. M. Carl, Fundamentals of Photonics (Wiley-Interscience, New
York, 1991).

[40] J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Reading, MA, 1994).

[41] K. Y. Bliokh and V. D. Freilikher, Phys. Rev. B 72, 035108 (2005).

[42] K. Y. Bliokh and Y. P. Bliokh, Ann. Phys. 319, 13 (2005).

[43] K. Y. Bliokh, Phys. Rev. Lett. 97, 043901 (2006).

[44] K. Y. Bliokh, Y. P. Bliokh, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 99, 190404
(2007).

[45] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Phys. Rev.
Lett. 88, 257901 (2002).

[46] H. Wei, X. Xue, J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, E. Yaoc,
and J. Courtial, Opt. Commun. 223, 117 (2003).

[47] X. Xue, H. Wei, and A. G. Kirk, Opt. Lett. 26, 1746 (2001).

[48] C. C. Leary, L. A. Baumgardner, and M. G. Raymer, Opt. Express 17,2435 (2009).

[49] A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).

[50] D. W. Swift, Opt. Laser Techno!. 4, 175 (1972).

[51] Z. Y. Ou and 1. Mandel, Am. J. Phys. 57, 66 (1989).

[52] E. Mukamel, K. Banaszek, 1. A. Walmsley, and C. Dorrer, Opt. Lett. 28, 1317 (2003).

[53] A. Royer, Phys. Rev. A 15,449 (1977).

[54] B. J. Smith, B. Killett, M. G. Raymer, 1. A. Walmsley, and K. Banaszek, Opt. Lett.
30, 3365 (2005).

[55] E. J. Galvez and P. M. Koch, J. Opt. Soc. Am. A 14, 3410 (1997).

[56] E. J. Galvez and C. D. Holmes, J. Opt. Soc. Am. A 16, 1981 (1999).



214

[57] M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 58, 523 (1987).

[58] M. Segev, R. Solomon, and A. Yariv, Phys. Rev. Lett. 69, 590 (1992).

[59] A. T. O'Neil and J. Courtial, Opt. Commun. 181,35 (2000).

[60] J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.

[61] M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), 4th ed.

[62] V. S. Liberman and B. Y. Zel'dovich, Phys. Rev. A 46, 5199 (1992).

[63] A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers,
Norwell, MA, 1983), 1st ed.

[64) C. K. Hong and L. Mandel, Phys. Rev. A 31, 2409 (1985).

[65] D. McGloin, N. B. Simpson, and M. J. Padgett, App. Opt. 37, 469 (1998).

[66] E. Bortolotti, Atti R. Accad. Naz. Lincei Rend C1. Sci. Fis. Mat. Nat. 4, 552 (1926).

[67] S. M. Rytov, Tr. Fiz. Inst. Akad. Nauk. SSSR 2, 1 (1940).

[68) V. V. Vladimirsky, Dokl. Akad. Nauk. SSSR 21,222 (1941).

[69] M. V. Berry, in Fundamental Aspects of Quantum Theory, edited by V. Gorini and
A. Frigerio (Plenum, New York, 1986), pp. 267-268.

[70] R. Y. Chiao and Y. Wu, Phys. Rev. Lett. 57, 933 (1986).

[71] A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).

[72] A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel'dovich, Phys. Rev. A
45, 8204 (1992).

[73] A. V. Volyar, V. Z. Zhilaitis, T. A. Fadeeva, and V. G. Shvedov, Pis'ma Zh. Tekh. Fiz.
24, 83 (1998).

[74] A. V. Volyar, V. Z. Zhilaitis, and V. G. Shvedov, Zh. Tekh. Fiz. 24, 87 (1998).

[75] K. Bliokh and Y. Bliokh, Phys. Lett. A 333, 181 (2004).

[76] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).

[77] K. Y. Bliokh, Europhys. Lett. 72, 7 (2005).

[78] A. Brard and H. Mohrbach, Phys. Lett. A 352, 190 (2006).



215

[79] A. Brard, H. Mohrbach, J. Lages, P. Gosselin, Y. Grandati, H. Boumrar, and M. F.,
J. Phys.: Conf. SeL 70, 012004 (2007).

[80] P. Gosselin, A. Brard, and H. Mohrbach, Euro. Phys. J. B 58, 137 (2007).

[81] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Nat. Photon. 2,748 (2008).

[82] O. Hosten and P. Kwiat, Science 319, 787 (2008).

[83] K. Y. Bliokh and A. S. Desyatnikov, Phys. Rev. A 79, 011807 (2009).

[84] C. C. Leary, M. G. Raymer, and S. J. van Enk, Phys. Rev. A 80, 061804 (2009).

[85] W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer-Verlag,
Berlin, 1997).

[86] E. Merzbacher, Quantum Mechanics (Wiley, New York, 1997), 3rd ed.

[87] M. Carmeli, Group Theory and General Relativity (World Scientific, Singapore, 1977).

[88] S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright,
J. M. Girkin, P. Ohberg, and A. A. S., Opt. Express 15, 8619 (2007).

[89] S. J. van Enk and G. Nienhuis, Phys. Rev. A 76, 053825 (2007).

[90] M. W. Beijersbergen, 1. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt.
Commun. 96, 123 (1993).

[91] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005).

[92] M. E. Rose, Relativistic Electron Theory (Wiley, New York, 1961).

[93] C. C. Leary, D. Reeb, and M. G. Raymer, New Journ. Phys. 10, 103022 (2008).

[94] S. M. Lacey, Ph.D. thesis, University of Oregon (2003).

[95] B. J. Smith and M. G. Raymer, New Journ. Phys. 9, 414 (2007).

[96] B. J. Smith, Ph.D. thesis, University of Oregon (2007).

[97] N. S. Kapany and J. J. Burke, Optical Waveguides (Academic Press, New York, 1972).

[98] Z. Bouchal and M. Olivik, Journ. Mod. Opt. 42, 1555 (1995).

[99] K. Y. Bliokh, J. Math. Phys. 43, 25 (2002).

[100] K. Y. Bliokh, J. Math. Phys. 43, 5624 (2002).




