183 research outputs found

    Thermodynamics of a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying the middle of the links). This study is motivated by the description of a recently synthesized molecular magnetic compound. First, we trace out the spin 1/2 degrees of freedom to obtain a fully classical model with an effective ferromagnetic interaction. Then, using high temperature expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We show that it provides a good quantitative description of the magnetic susceptibility of the molecular magnet in its paramagnetic phase.Comment: Revtex, 6 pages, 4 included postscript figures, fig.1 upon request to [email protected] . To appear in J. of Physic C (condensed matter

    Phenomenology of the Pentaquark Antidecuplet

    Get PDF
    We consider the mass splittings and strong decays of members of the lowest-lying pentaquark multiplet, which we take to be a parity-odd antidecuplet. We derive useful decompositions of the quark model wave functions that allow for easy computation of color-flavor-spin matrix elements. We compute mass splittings within the antidecuplet including spin-color and spin-isospin interactions between constituents and point out the importance of hidden strangeness in rendering the nucleon-like states heavier than the S=1 state. Using recent experimental data on a possible S=1 pentaquark state, we make decay predictions for other members of the antidecuplet.Comment: 12 pages LaTeX, 1 eps figur

    Magnetic properties of exactly solvable doubly decorated Ising-Heisenberg planar models

    Full text link
    Applying the decoration-iteration procedure, we introduce a class of exactly solvable doubly decorated planar models consisting both of the Ising- and Heisenberg-type atoms. Exact solutions for the ground state, phase diagrams and basic physical quantities are derived and discussed. The detailed analysis of the relevant quantities suggests the existence of an interesting quantum antiferromagnetic phase in the system.Comment: 9 pages, 9 figures, submitted to Physical Review

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSO⋅y\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Interaction between expectancies and drug effects: an experimental investigation of placebo analgesia with caffeine as an active placebo

    Get PDF
    In a randomised placebo-controlled clinical trial it is assumed that psychosocial effects of the treatment, regression to the mean and spontaneous remission are identical in the drug and placebo group. Consequently, any difference between the groups can be ascribed to the pharmacological effects. Previous studies suggest that side effects of drugs can enhance expectancies of treatment effects in the drug group compared to the placebo group, and thereby increase placebo responses in the drug group compared to the placebo group. The hypothesis that side effects of drugs can enhance expectancies and placebo responses was tested. Painful laser stimuli were delivered to 20 healthy subjects before and after administration of a drink with 0 or 4 mg/kg caffeine. The drink was administered either with information that it contained a painkiller or that it was a placebo. Laser-evoked potentials and reports of pain, expectancy, arousal and stress were measured. Results Four milligrammes per kilogramme of caffeine reduced pain. Information that a painkiller was administered increased the analgesic effect of caffeine compared to caffeine administered with no drug information. This effect was mediated by expectancies. Information and expectancies had no effect on pain intensity when 0 mg/kg was administered. The analgesic effect of caffeine was increased by information that a painkiller was administered. This was due to an interaction of the pharmacological action of the drug and expectancies. Hence, psychosocial effects accompanying a treatment can differ when an active drug is administered compared to a placebo

    Study of qqqccˉqqqc\bar{c} five quark system with three kinds of quark-quark hyperfine interaction

    Full text link
    The low-lying energy spectra of five quark systems uudccˉuudc\bar{c} (I=1/2, S=0) and udsccˉudsc\bar{c} (I=0, S=-1) are investigated with three kinds of schematic interactions: the chromomagnetic interaction, the flavor-spin dependent interaction and the instanton-induced interaction. In all the three models, the lowest five quark state (uudccˉuudc\bar{c} or udsccˉudsc\bar{c}) has an orbital angular momentum L=0 and the spin-parity JP=1/2−J^{P}=1/2^{-}; the mass of the lowest udsccˉudsc\bar{c} state is heavier than the lowest uudccˉuudc\bar{c} state
    • 

    corecore