10 research outputs found

    Bacterial artificial chromosomes improve recombinant protein production in mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of appropriate expression vectors for large scale protein production constitutes a critical step in recombinant protein production. The use of conventional expression vectors to obtain cell lines is a cumbersome procedure. Often, stable cell lines produce low protein yields and production is not stable over the time. These problems are due to silencing of randomly integrated expression vectors by the surrounding chromatin. To overcome these chromatin effects, we have employed a Bacterial Artificial Chromosome (BAC) as expression vector to obtain stable cell lines suitable for protein production.</p> <p>Results</p> <p>In this work, we explore the efficacy of a Bacterial Artificial Chromosome based vector applied to production of the constant region of the human IgG1. Direct comparison of bulk HEK 293 cell cultures generated with a "conventional" vector or with a BAC-based vector showed that the BAC-based vector improved the protein yield by a factor of 10. Further analysis of stable cell clones harboring the BAC-based vector showed that the protein production was directly proportional to the number of integrated BAC copies and that the protein production was stable for at least 30 passages.</p> <p>Conclusion</p> <p>Generation of stable cell clones for protein production using Bacterial Artificial Chromosomes offers a clear advantage over the use of conventional vectors. First, protein production is increased by a factor of 10; second, protein production is stable overtime and third, generation of BAC-based expression vectors does not imply a significant amount of work compare to a conventional vector. Therefore, BAC-based vectors may become an attractive tool for protein production.</p

    Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk

    Get PDF
    Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin alpha 5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.Peer reviewe

    Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth

    Get PDF
    A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor

    Selective Modulation of Hedgehog/GLI Target Gene Expression by Epidermal Growth Factor Signaling in Human Keratinocytes

    No full text
    Hedgehog (HH)/GLI signaling plays a critical role in epidermal development and basal cell carcinoma. Here, we provide evidence that epidermal growth factor receptor (EGFR) signaling modulates the target gene expression profile of GLI transcription factors in epidermal cells. Using expression profiling and quantitative reverse transcriptase PCR, we identified a set of 19 genes whose transcription is synergistically induced by GLI1 and parallel EGF treatment. Promoter studies of a subset of GLI/EGF-regulated genes, including the genes encoding interleukin-1 antagonist IL1R2, Jagged 2, cyclin D1, S100A7, and S100A9, suggest convergence of EGFR and HH/GLI signaling at the level of promoters of selected direct GLI target genes. Inhibition of EGFR and MEK/ERK but not of phosphatidylinositol 3-kinase/AKT abrogated synergistic activation of GLI/EGF target genes, showing that EGFR can signal via RAF/MEK/ERK to cooperate with GLI proteins in selective target gene regulation. Coexpression of the GLI/EGF target IL1R2, EGFR, and activated ERK1/2 in human anagen hair follicles argues for a cooperative role of EGFR and HH/GLI signaling in specifying the fate of outer root sheath (ORS) cells. We also show that EGF treatment neutralizes GLI-mediated induction of epidermal stem cell marker expression and provide evidence that EGFR signaling is essential for GLI-induced cell cycle progression in epidermal cells. The results suggest that EGFR signaling modulates GLI target gene profiles which may play an important regulatory role in ORS specification, hair growth, and possibly cancer

    A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions

    No full text
    Genetically-engineered mouse models (GEMMs) lacking diseased-associated gene(s) globally or in a tissue-specific manner represent an attractive tool with which to assess the efficacy and toxicity of targeted pharmacological inhibitors. Stat3 and Stat5a/b transcription factors have been implicated in several pathophysiological conditions, and pharmacological inhibition of both transcription factors has been proposed to treat certain diseases, such as malignancies. To model combined inhibition of Stat3 and Stat5a/b we have developed a GEMM harboring a flox Stat3-Stat5a/b allele (Stat5/3loxP/loxP mice) and generated mice lacking Stat3 and Stat5a/b in hepatocytes (Stat5/3Δhep/Δhep). Stat5/3Δhep/Δhep mice exhibited a marked reduction of STAT3, STAT5A and STAT5B proteins in the liver and developed steatosis, a phenotype that resembles mice lacking Stat5a/b in hepatocytes. In addition, embryonic deletion of Stat3 and Stat5a/b (Stat5/3Δ/Δ mice) resulted in lethality, similar to Stat3Δ/Δ mice. This data illustrates that Stat5/3loxP/loxP mice are functional and can be used as a valuable tool to model the combined inhibition of Stat3 and Stat5a/b in tumorigenesis and other diseases.We thank Hans-Christian Theussl for performing blastocyst injections, Francis Stewart for providing the pUBC/EM7-hygromicin and pSC101-BAD-gbaA plasmids.Funding: Open Access Funding by the Austrian Science Fund (FWF): P 25599-B19 (EC) and the Austrian Federal Ministry of Science and Research GENAU grant ‘Austromouse’ (EC and RE). RE was supported by the Austrian Science Fund (FWF) Doktoratskolleg-plus grant “Inflammation and Immunity”, the FWF grants P25925-B20,P26908-B20 and P29222-B28.S

    Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth

    No full text
    A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppresso
    corecore