73 research outputs found

    Constraining the role of early land plants in Palaeozoic weathering and global cooling

    Get PDF
    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9–13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician

    Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions

    Get PDF
    Nutrient losses from agricultural land to freshwater and marine environments contribute to eutrophication and often to the growth of algal blooms. However, the potential benefits of recycling this algal biomass back to agricultural land for soil quality and crop nutrition in a “circular-economy” has received little attention. We tested the effects of algal additions to arable soil in greenhouse-grown garden peas, and field plots of spring wheat, on plant growth and nutrition and physical and chemical properties of the soil. Representatives of five algal species, which contrasted in elemental composition, were applied at 0.2, 2 and 4 g kg−1in the greenhouse and at 24 g m2in the field. These included the cyanobacteria Arthrospira platensis (Spirulina), the unicellular green algae Chlorella sp., the red seaweed Palmaria palmata, and the brown seaweeds Laminaria digitata and Ascophyllum nodosum. In the greenhouse at the highest application rates (4 g kg−1), Chlorella sp., and Spirulina increased soil total nitrogen and available phosphorus, and Spirulina also increased soil nitrate concentrations. P. palmata and L. digitata significantly increased soil inorganic (NH4+and NO3−) concentrations under all three application rates. Chlorella sp. significantly increased soil total P, N and C, available P, NH4+-N, and pea yield. Soil water-stable aggregates were unchanged by the algal additions in both the greenhouse and field study. In the field, 4 species (Chlorella sp. Spirulina, P. palmata and L. digitata) increased soil inorganic nitrogen concentrations, confirming their potential to recycle mineralizable nitrogen to agricultural soils, but no significant effects were found on wheat yields under the application rates tested

    Feeding a city – Leicester as a case study of the importance of allotments for horticultural production in the UK

    Get PDF
    The process of urbanization has detached a large proportion of the global population from involvement with food production. However, there has been a resurgence in interest in urban agriculture and there is widespread recognition by policy-makers of its potential contribution to food security. Despite this, there is little data on urban agricultural production by non-commercial small-scale growers. We combine citizen science data for self-provisioning crop yields with field-mapping and GIS-based analysis of allotments in Leicester, UK, to provide an estimate of allotment fruit and vegetable production at a city-scale. In addition, we examine city-scale changes in allotment land provision on potential crop production over the past century. The average area of individual allotment plots used to grow crops was 52%. Per unit area yields for the majority of crops grown in allotments were similar to those of UK commercial horticulture. We estimate city-wide allotment production of >1200 t of fruit and vegetables and 200 t of potatoes per annum, equivalent to feeding >8500 people. If the 13% of plots that are completely uncultivated were used this could increase production to >1400 t per annum, feeding ~10,000 people, however this production may not be located in areas where there is greatest need for increased access to fresh fruits and vegetables. The citywide contribution of allotment cultivation peaked in the 1950s when 475 ha of land was allotments, compared to 97 ha currently. This suggests a decline from >45,000 to <10,000 of people fed per annum. We demonstrate that urban allotments make a small but important contribution to the fruit and vegetable diet of a UK city. However, further urban population expansion will exert increasing development pressure on allotment land. Policy-makers should both protect allotments within cities, and embed urban agricultural land within future developments to improve local food security

    Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome

    Get PDF
    Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi

    Sustainable soil management in the United Kingdom: A survey of current practices and how they relate to the principles of regenerative agriculture

    Get PDF
    Sustainable soil management is essential to prevent agricultural soil degradation and maintain food production and core soil-based ecosystem services. Regenerative agriculture, one approach to sustainable soil management, is rapidly gaining traction in UK farming and policy. However, it is unclear what farmers themselves consider to be sustainable soil management practices, and how these relate to the principles of regenerative agriculture. Further, there is little insight into how sustainable soil management is currently promoted in agricultural knowledge and innovation services (AKIS). To address these knowledge gaps, we undertook the first national-scale survey of sustainable soil management practices in the United Kingdom and complemented it with targeted interviews. We found high levels of awareness (>60%) and uptake (>30%) of most sustainable soil management practices among mixed and arable farmers. Importantly, 92% of respondents considered themselves to be practising sustainable soil management. However, our analysis shows that farmers combine practices in different ways. Not all these combinations correspond to the full set of regenerative agriculture principles of reduced soil disturbance, soil cover and crop diversity. To better understand the relationship between existing sustainable soil management practices in the United Kingdom and regenerative agriculture principles, we derive a “regenerative agriculture score” by allocating individual practices among the principles of regenerative agriculture. Farmers who self-report that they are managing soil sustainably tend to score more highly across all five principles. We further find that sustainable soil management messaging is fragmented and that few AKIS networks have sustainable soil management as their primary concern. Overall, our study finds that there are multiple understandings of sustainable soil management among UK farmers and land managers and that they do not correspond to regenerative agriculture principles in a straightforward way. This diversity and variety in sustainable soil management needs to be taken into account in future policy and research

    A multi-objective evolutionary algorithm fitness function for case-base maintenance.

    Get PDF
    Case-Base Maintenance (CBM) has two important goals. On the one hand, it aims to reduce the size of the case-base. On the other hand, it has to improve the accuracy of the CBR system. CBM can be represented as a multi-objective optimization problem to achieve both goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been recognised as appropriate techniques for multi-objective optimisation because they perform a search for multiple solutions in parallel. In the present paper we introduce a fitness function based on the Complexity Profiling model to perform CBM with MOEA, and we compare its results against other known CBM approaches. From the experimental results, CBM with MOEA shows regularly good results in many case-bases, despite the amount of redundant and noisy cases, and with a significant potential for improvement

    Urban Tree Effects on Soil Organic Carbon

    Get PDF
    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ~75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C:N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered

    Nanoscale channels on ectomycorrhizal-colonized chlorite: Evidence for plant-driven fungal dissolution

    Get PDF
    The roots of many trees in temperate and boreal forests are sheathed with ectomycorrhizal fungi (EMF) that extend into the soil, forming intimate contact with soil minerals, from which they absorb nutrient elements required by the plants and, in return, are supported by the organic carbon photosynthesized by the trees. While EMF are strongly implicated in mineral weathering, their effects on mineral surfaces at the nanoscale are less documented. In the present study, we investigated the effects of symbiotic EMF on the topography of a chlorite mineral using atomic force microscopy. A cleaning protocol was successfully applied to remove fungal hyphae without altering the underlying mineral structure and topography. Examination of the exposed chlorite surface showed the presence of primary channels, of the order of a micron in width and up to 50 nm in depth, the morphology of which strongly indicates a fungal-induced origin. Smaller secondary channels were observed extending from the primary channels and would appear to be involved in their enlargement. The presence of channels is the first nanoscale demonstration of the effects of fungal interaction, fuelled by plant photosynthate, on the topography of a chlorite mineral, and it provides clear evidence of the ability of EMF to enhance mineral dissolution

    Elevated CO2 interacts with nutrient inputs to restructure plant communities in phosphorus-limited grasslands

    Get PDF
    Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m−2 year−1) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m−2 year−1) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2, N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2–nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P

    Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests

    Get PDF
    The origin of trees and forests in the Mid Devonian (393–383 Ma) was a turning point in Earth history, marking permanent changes to terrestrial ecology, geochemical cycles, atmospheric CO2 levels, and climate. However, how all these factors interrelate remains largely unknown. From a fossil soil (palaeosol) in the Catskill region near Cairo NY, USA, we report evidence of the oldest forest (mid Givetian) yet identified worldwide. Similar to the famous site at Gilboa, NY, we find treefern-like Eospermatopteris (Cladoxylopsida). However, the environment at Cairo appears to have been periodically drier. Along with a single enigmatic root system potentially belonging to a very early rhizomorphic lycopsid, we see spectacularly extensive root systems here assigned to the lignophyte group containing the genus Archaeopteris. This group appears pivotal to the subsequent evolutionary history of forests due to possession of multiple advanced features and likely relationship to subsequently dominant seed plants. Here we show that Archaeopteris had a highly advanced root system essentially comparable to modern seed plants. This suggests a unique ecological role for the group involving greatly expanded energy and resource utilization, with consequent influence on global processes much greater than expected from tree size or rooting depth alone
    corecore